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We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed. We derive the
equations of motion for the angular speed of the roller tape, the peel angle and the pull force used in earlier
investigations using a Lagrangian. Due to the constraint between the pull force, peel angle and the peel force,
it falls into the category of differential-algebraic equations requiring an appropriate algorithm for its numerical
solution. Using such a scheme, we show that stick-slip jumps emerge in a purely dynamical manner. Our
detailed numerical study shows that these set of equations exhibit rich dynamics hitherto not reported. In
particular, our analysis shows that inertia has considerable influence on the nature of the dynamics. Following
studies in the Portevin–Le Chatelier effect, we suggest a phenomenological peel force function which includes
the influence of the pull speed. This reproduces the decreasing nature of the rupture force with the pull speed
observed in experiments. This rich dynamics is made transparent by using a set of approximations valid in
different regimes of the parameter space. The approximate solutions capture major features of the exact
numerical solutions and also produce reasonably accurate values for the various quantities of interest.
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I. INTRODUCTION

Peeling is a kind of fracture that has been studied experi-
mentally in the context of adhesion and is a technologically
important subject. Experimental studies on peeling of an ad-
hesive tape mounted on a cylindrical roll are usually in con-
stant pull speed condition[1–6]. More recently, constant load
experiments have also been reported[3,7]. Early studies by
Bikermann [5], Kaeble [6] have attempted to explain the
results by considering the system as a fully elastic object.
This is clearly inadequate as it ignores the viscoelastic nature
of the glue at the contact surface and therefore cannot cap-
ture many important features of the dynamics. The first de-
tailed experimental study of Maugis and Barquins[1] show
stick-slip oscillations within a window of pull velocity with
decreasing amplitude of the pull force as a function of the
pull velocity. Further, these authors report that the pull force
shows sinusoidal, sawtooth and highly irregular(chaotic as
these authors refer to) wave patterns with increasing veloci-
ties. More recently, Ganduret al. have carried out a dynami-
cal time series analysis of the force waveforms, as well as
those of acoustic emission signals and report chaotic force
waveforms at the upper end of the pull velocities[3]. One
characteristic feature of the peeling process is that the experi-
mental strain energy release rate shows two stable branches
separated by an unstable branch. Stick-slip behavior is com-
monly observed in a number of systems such as jerky flow or
the Portevin–Le Chatelier(PLC) effect [8], frictional sliding
[9], and even earthquake dynamics is thought to result from
stick-slip of tectonic plates[10]. Stick-slip is characterized
by the system spending most of the time in the stuck state

and a short time in the slip state, and is usually seen in
systems subjected to a constant response where the force
developed in the system is measured by dynamically cou-
pling the system to a measuring device. One common feature
of such systems is that the force exhibits “negative flow rate
characteristic”(NFRC). Models which attempt to explain the
dynamics of such systems use the macroscopic phenomeno-
logical NFRC feature as an input, although the unstable re-
gion is not accessible. This is true for models dealing with
the dynamics of the adhesive tape as well. To the best of our
knowledge, there is no microscopic theory which predicts the
origin of the NFRC macroscopic law except in the case of
the PLC effect[11,12] (see below).

As there is a considerable similarity between the peeling
of an adhesive tape and the PLC effect, it is useful to con-
sider the similarities in some detail. The PLC effect refers to
a type of plastic instability observed when samples of dilute
alloys are deformed under constant cross head speeds[13].
The effect manifests itself in the form of a series of serra-
tions in a range of applied strain rates and temperatures. This
feature is much like the peeling of an adhesive tape. Other
features common to these two situations are: abrupt onset of
the large amplitude oscillations at low applied velocities with
a gradually decreasing trend and NFRC, which in the PLC
effect refers to the existence of negative strain rate sensitivity
of the flow stress. In the case of the PLC effect, the physical
origin of the negative strain rate sensitivity is attributed to
the aging of dislocations and their tearing away from the
cloud of solute atoms. Recently, the origin of the negative
SRS has been explicitly demonstrated as arising from com-
peting time scales of pinning and unpinning in the Anan-
thakrishna’s model[11,12]. In the case of adhesive tape, the
origin of NFRC can be attributed to the viscoelastic behavior
of the fluid. (Constant load and constant load rate experi-
ments are possible in the PLC also.) While simple phenom-
enological models based on NFRC explain the generic fea-
tures of the PLC effect[14], there appears to be some doubts
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if the equations of motion conventionally used in the present
case of peeling are adequate to describe the velocity jumps
[2,4]. Indeed, these equations of motion are singular and
pose problems in the numerical solutions.

Apart from detailed experimental investigation of the
peeling process, Maugis and Barquins[1], have also contrib-
uted substantially to the understanding of the dynamics of
the peeling process. However, the first dynamical analysis is
due to Hong and Yue[2] who use an “N” shaped function to
mimic the dependence of the peel force on the rupture speed.
They showed that the system of equations exhibits periodic
and chaotic stick-slip oscillations. However, the jumps in the
rupture speed are introducedexternallyonce the rupture ve-
locity exceeds the limit of stability[4,15]. Thus, the stick-
slip oscillations arenot obtained as a natural consequence of
the equations of motion. Therefore, in our opinion the results
presented in Ref.[2] are the artifacts of the numerical pro-
cedure followed. Ciccottiet al. [4] interpret the stick-slip
jumps as catastrophes. Again, the belief that the jumps in the
rupture velocity cannot be obtained from the equations of
motion appears to be the motivation for introducing the ac-
tion of discrete operators on the state of the system to inter-
pret the stick-slip jumps[4], though they do not demonstrate
the correctness of such a framework for the set of equations.
Lastly, there are no reports that explain the decrease in the
amplitude of the peel force with increasing pull speed as
observed in experiments.As there is a general consensus
that these equations of motion correctly describe the experi-
mental system, a proper resolution of this question (on the
absence of dynamical jumps in these equations) assumes im-
portance.

The purpose of this paper is to show that the dynamics of
stick-slip during peeling can be explained using a
differential-algebraic scheme meant for such singular situa-
tions [16] and demonstrate the rich dynamics inherent to
these equations. In what follows we first derive the equations
of motion (used earlier[2]) by introducing an appropriate
Lagrangian for the system. Then, we use an algorithm meant
to solve differential-algebraic equations[16] and present the
results of our simulations for various parameter values. One
of our major findings is that inertia has a strong influence on
the dynamics. In addition, following the dynamization
scheme similar to the one used in the context of the PLC
effect [14], we suggest that the peel force depends on the
applied velocity. Using this form of peel force leads to the
decreasing nature of the magnitude of the pull force as a
function of applied velocity. For certain values of the inertia,
we find canard type solutions. These numerical results are
captured to a reasonable accuracy using a set of approxima-
tions valid in different regimes of the parameter space. Even
though our emphasis is on demonstrating the correctness of
these equations of motion and richness of the inherent dy-
namics that capture the qualitative features of the peeling
process, we also attempt to make a comparison of the experi-
mental results mentioned above to the extent possible.

II. EQUATIONS OF MOTION

For the sake of completeness, we start by considering the
geometry of the experimental setup shown schematically in

Fig. 1. An adhesive roll of radiusR is mounted on an axis
passing throughO normal to the paper and is pulled at a
constant velocityV by a motor positioned atO8 with a force
F acting alongPO8. Let the distance betweenO andO8 be l,
and that between the contact pointP to O8 beL. The pointP
moves with a local velocityv which can undergo rapid bursts
in the velocity during rupture. The force required to peel the
tape is usually called the force of adhesion denoted byf. The
two measured branches referred to earlier, are those of the
function f in a steady state situation of constant pulling ve-
locity (i.e., there are no accelerations). The lineL makes an
angleu with the tangent at the contact pointP. The pointP
subtends an anglea at O, with the horizontal lineOO8. We
denote the elastic constant of the adhesive tape byk, the
elastic displacement of the tape byu, the angular velocity by
v and the moment of inertia of the roll byI. The angular
velocity itself is identified byv=ȧ+v /R. The geometry of
the setup givesL cosu=−l sina and L sinu= l cosa−R
which further gives,L2= l2+R2−2lR cosa. The total velocity
V at O8 is then made up of three contributions[1], given by

V=v+ u̇− L̇, which gives

v = V + L̇ − u̇ = V − Rcosu ȧ − u̇. s1d

Following standard methods in mechanics, it is straightfor-
ward to derive the equations of motion fora andv by con-
sideringsa ,ȧ ,u,u̇d as the generalized coordinates. The cor-
responding Lagrangian of the system can be written as

Lsa,ȧ,u,u̇d =
I

2
fvsa,ȧ,u,u̇dg2 −

k

2
u2. s2d

We write the dissipation function as

R = Fsv,Vd =E fsv,Vddv, s3d

where fsv ,Vd physically represents the peel force which we
assume is dependent on rupture speed as well as the pull
speed assumed to be derivable from a potential function
Fsv ,Vd. The physical origin of this is due to the competition
between the internal relaxation time scale of the viscoelastic
fluid and the time scale determined by the applied velocity
[17]. When the applied velocity is low, there is sufficient
time for the viscoelastic fluid to relax. As we increase the
applied velocity, the relaxation of the fluid gets increasingly
difficult and thus behaves much like an elastic substance.
The effect of competing time scales is well represented by
Deborah number[18] which is the ratio of time scale for
structural relaxation to the characteristic time scale for defor-

FIG. 1. Schematic plot of experimental setup.
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mation. Indeed, in the studies on Hele-Shaw cell with mud as
the viscous fluid, one observes a transition from viscous fin-
gering to viscoelastic fracturing[19] with increasing rate of
invasion of the displacing fluid.

As stated in the Introduction, the existing models do not
explain the decreasing amplitude of pull force. Similar fea-
ture observed in the PLC serrations has been modeled using
a scheme referred to as dynamization of the negative strain
rate sensitivity(SRS) of the flow stressfsėPd [14,20], where
ėp is the plastic strain rate. Based on arguments similar to the
preceding paragraph, they modify this function to depend on
the applied strain rate,ėa, i.e., the negative SRS of the flow
stress is taken to befsėP, ėad such that the gap between the
maximum and the minimum of the functionfsėp, ėad de-
creases with increasingėa. Following this, we considerf to
depend onV also, in a way that the gap inf decreases as a
function of the pull speedV (Fig. 2).

Using the Lagrange equations of motion,

d

dt
S ] L

] ȧ
D −

] L
] a

+
] R
] ȧ

= 0, s4d

d

dt
S ] L

] u̇
D −

] L
] u

+
] R
] u̇

= 0. s5d

We obtain the same set of ordinary differential equations as
in Ref. [2] given by

ȧ = v − v/R, s6d

Iv̇ = FRcosu = − FRsina . − FRa, s7d

Ḟ = ku̇= ksV − vd − k cosusvR− vd, s8d

.kfV − v + Raȧg, s9d

with an algebraic constraint

Fs1 − cosud − fsv,Vd . Fs1 + ad − fsv,Vd = 0. s10d

(The last equation results from the elimination of two second
order equations fora.) In Eqs. (7), (9), and (10) we have
used cosu.−sina,−a. While Eqs.(6)–(9) are differential
equations, Eq.(10) is an algebraic constraint necessitating
the use of differential-algebraic scheme to obtain the numeri-
cal solution[16].

The fixed point of Eqs.(6), (7), (9), and(10) is given by
a=0,v=V/R,v=V,F= fsV,Vd. (For numerical solution, in
the above equations we have actually used sina in place of
a.) This point is stable forf8sV,Vd.0 and unstable for
f8sV,Vd,0. As V is varied such that the sign off8sV,Vd
changes from negative to positive value, the system under-
goes a Hopf bifurcation and a limit cycle appears. The limit
cycles reflect the abrupt jumps between the two positive
slope branches of the functionfsv ,Vd.

III. ALGORITHM

The singular nature of these equations becomes clear if
one were to consider the differential form of Eq.(10) given
by

v̇ =
1

f8sv,Vd
fḞs1 − cosud + Fssinudu̇g, s11d

.fḞs1 + ad + Fȧg/f8, s12d

where the prime denotes the derivative with respect tov.
Equation(11) with Eqs. (6), (7), and (8) [or (9)] constitute
the full set of evolution equations for the vectorsa ,v ,F ,vd.
However, it is clearly singular at points of extremum of
fsv ,Vd, requiring an appropriate numerical algorithm.

We note that Eqs.(6), (7), (8), and(10) can be written as

MẊ = fsXd, s13d

whereX=sa ,v ,F ,vd ,f is a vector function that governs the
evolution ofX andM is a singular“mass matrix” [16] given
by

M =1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0
2 .

Equation(13) is a differential-algebraic equation(DAE) and
can be solved using the so-called singular perturbation tech-

FIG. 2. (a) Plots of fsv ,Vd as a function ofv (x axis in log scale)
for V=1 (solid curve), V=2 (dashed curve), V=4 (dashed and dot-
ted curve), V=6 (dotted curve); see Eq.(14). (b) Experimental
strain energy release rate,Gsvd curve as in Ref.[1]. [Units of
fsv ,Vd is in N, Gsvd in J /m2, andv ,V are in m/s.]
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nique [16] in which the singular matrixM is perturbed by
adding a small constante such that the singularity is re-
moved. The resulting equations can then be solved numeri-
cally and the limit solution obtained ase→0. We have
checked the numerical solutions fore values ranging from
10−7 to 10−15 in some cases and the results do not depend on
the value ofe used as long as it is small. The results pre-
sented below, however, are fore=10−7. We have solved Eq.
(13) using a standard variable-order solver,MATLAB ODE15S

program.
We have parametrized the form offsv ,Vd as

fsv,Vd = 400v0.35+ 110v0.15+ 130esv/11d − 2V1.5− s415

− 45V 0.4− 0.35V2.15dv0.5, s14d

to give values of the extremum of the peel velocity that
mimic the general form of the experimental curves[1]. The
measured strain energy release rateGsVd from stationary
state measurements is shown in Fig. 2(b). The decreasing
nature of the gap between the maximum and minimum of
fsv ,Vd for increasingV is clear from Fig. 2(a). [The values
of fsv ,Vd could not be correctly determined asGsVd is in
J/m2 requiring more details. However, the value ofFmax is
closer to Ref.[2] and the jumps inv are similar to those in
experiments.] The reason for using the form given by Eq.
(14) is that the effects of dynamization are easily included
through its dependence on the pulling velocity while more
complicated terms are required to mimic completely the ex-
perimental curve(particularly the flat portion). However, we
stress that the trend of the results remains unaffected when
the actual experimental curve is used except for the magni-
tude of velocity jumps and the force values.

IV. RESULTS

We have studied the dynamics of the system of equations
for a wide range of values of the parameters. We have found
that transients for some regions of parameters space take
considerable time to die out. The results reported here are
obtained after these long transients are omitted. These equa-
tions exhibit rich dynamics, some even unanticipated. Here
we report typical results for two important parameters,
namely, the pull velocityV sm/sd and the inertiaI skg m2d,
keeping the elastic constant of the tapek=1000N/m, R
=0.1 m, andl =1 m [2]. The influence ofk will also be men-
tioned briefly.(Henceforth, we drop the units for the sake of
brevity.) We find that the observed jumps of the orbit in the
v-F plane occur in a fully dynamical way. More importantly,
we find all the three possibilities namely, the orbit can jump
when it approaches the limit of stability, before or beyond
that permitted byfsv ,Vd. The dynamics can be broadly clas-
sified into low, intermediate and high regimes of inertia.

(i) Low inertia. Here also, there are three regimes: low,
intermediate, and high pull velocity.

(a) Consider keeping inertiaI at a low value(say I
=10−5) and V also at a low value(say, near the top, sayV
=0.4). Here we observe regular saw tooth form for the pull
force F. The phase plot in theF-v plane is as shown in Fig.
3(a) (dotted curve). The corresponding functionfsv ,Vd is

also shown by the continuous curve. We see that the trajec-
tory jumps almost instantaneously fromB to C on reaching
the maximum offsv ,Vd (or from D to A when it reaches the
minimum). The system spends considerably more time on
AB compared to that onCD. However, this feature of jump-
ing of the trajectory at the limit of stability is only true for

FIG. 3. (a) A typical phase space trajectory in thev-F plane for
V=0.4,I =10−5. The correspondingfsv ,Vd is shown by a solid
curve.(b) A phase space trajectory in thev-F plane forV=1.0 and
I =10−5. (c) A plot of astd for V=1 andI =10−5. (d) A plot of Fstd
(period 4) for V=2 andI =10−5. (Units of v ,V are in m/s,F in N,
I in kg m2, andt in s.)
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small values ofI and whenV is near the limit of stability. At
slightly higher pull velocity, sayV=1, even for smallI, say
I =10−5, the jumps occur even before reaching the top or
bottom(the pointsB andD) as can be seen from Fig. 3(b) for
V=1. The small amplitude high frequency oscillations seen
in the phase plots[Figs. 3(a) and 3(b)] on the branchAB are
due to the inertial effect, i.e., finite value ofI. These oscilla-
tions are better seen on theastd plot shown in Fig. 3(c). For
these values of parameters, the system is aperiodic.

(b) As we increaseV, even as the saw tooth form ofF
is retained, various types of periodic orbits[period 4 shown
in Fig. 3(d) for V=2] as well as irregular orbits are seen. In
both cases(periodic as well as chaotic) the trajectory jumps
from high velocity branchsCDd to the low velocity branch
before traversing the entire branch or sometimes going be-
yond the values permitted byf. The value ofF at which the
orbit jumps is different for different cycles. ForI =10−5, at
high velocity, sayV=4, the phase plot is periodic.

(ii ) Intermediate and high inertia.
(a) As the results of smallV for intermediate and high

inertia are similar, we illustrate the results forI =10−2 and
V=1. Thev-F phase plot,a , F, and v are shown in Figs.
4(a)–4(d). Consider Fig. 4(a) showing a typical phase space
trajectory for a single cycle. The corresponding function
fsv ,Vd is also shown by the thick continuous curve. We see
that the maximum(and minimum) value of F is larger (or
smaller) than that allowed byfsv ,Vd. [This feature holds
when the inertia is in the intermediate regime also, though
the values of maxima(minima) of F are not significantly
larger(less) than fmaxsfmind.] When the trajectory jumps from
AB to CD at the highest value ofF for the cycle, the trajec-
tory stays onCD for a significantly shorter time compared to
the small inertia casesI =10−5d and jumps back toAB well
before F has reached the minimum offsv ,Vd, i.e., DF is
much smaller thanfmax− fmin. The pull force F cascades
down through a series of back and forth jumps between the
two branches till the lowest value ofF for the cycle is
reached. Note thatF at the pointn is less thanfmin. For the
sake of clarity, two different portions of the trajectory are
markedabcdefgand i jklmna corresponding to the top and
bottom regions of the plot. The corresponding points are also
identified on theFstd plot. After reachingn, the orbit jumps
to a on AB, the trajectory decides to move up all the way till
F reaches a maximum value(larger thanfmax, the pointb)
without jumping to theCD branch. This part ofF as a func-
tion of time, which is nearly linear onAB (i.e., the segment
ab) displays a noticeable sinusoidal modulation. The sinu-
soidal form is better seen ina [Fig. 4(b)]. Note that the
successive drops inF are of increasing magnitude. The
jumps between the two branches in thev-F plane are seen as
bursts ofv [Fig. 4(d)]. For these values of parameters, the
system is periodic.

(b) As we increaseV, the sinusoidal nature ofF anda
becomes more clear with its range becoming larger reaching
a nearly sinusoidal atV=4 for largeI. [The rangeab in Fig.
4(c) expands. Compare Fig. 5(a).] The average magnitude of
DF on theCD branch for smallV and moderately or largeI,
gradually decreases with increasingV. The magnitude ofDF
itself decreases asI is increased. In the limit of largeV andI,

FIG. 4. (a) Phase space trajectory in thev-F plane for a single
cycle for I =10−2 andV=1. The correspondingfsv ,Vd is shown by
a thick solid curve.(b) Corresponding plots ofastd, (c) the pull
force Fstd (period 8), and (d) the peel velocityvstd. (Units of v ,V
are in m/s,F in N, I in kg m2, andt in s.)
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the drops inF and a become quite small which are now
located near the maxima and minima of these curves. This is
shown in Figs. 5(a) and 5(b). The sinusoidal nature is now
obvious even inFstd unlike for smallerV and I where it is
clear only inastd for the low v branch. Note that forV=4,
the nature of fsv ,4d is nearly flat. This induces certain
changes in thev-F phase plot that are not apparent inF and
a. The jumps between the two branches are now concen-
trated in a dense band at low and high values ofF. In this
case, the maximum(minimum) value of F is significantly
larger(less) than fmax sfmind. These rapid jumps between the
branches manifest as jitter at the top and bottom ofF anda.

Unlike for smallV [Fig. 4(a)], the nature of the trajectory
in Fig. 5(c) is different. After reaching a critical value ofF
near the maximum value ofF (the pointb), the orbit spirals
upwards and then descends down till another critical value of
F (the pointc) is reached. Having reachedc, the orbit mono-
tonically comes down tilld where it jumps to theAB branch.
Beyond this point, it again spirals upwards till the pointa is
reached. Thereafter,F monotonically increases tillb is
reached. The regionsab and cd are the regions whereF
shows a near sinusoidal form. The regionsbc andda are the
regions where the orbit jumps between the branches rapidly.
These manifest themselves as bursts ofv which tend to
bunch together almost into a band.[Compare Fig. 4(d) with
Fig. 5(d).] It is interesting to note that the jumps between the
two branches occur exactly at points wheredf /dv=0, even
when the maximum(minimum) of F are higher(lower) than
that allowed by the stationary curvefsv ,Vd. The variables
are aperiodic for the set of parameters. The phase plots ap-
pear to be generated by an effectivefsv ,Vd that is being
cycled. [This visual feeling is mainly due to the fact that
jumps between the branches still occur at the maximum and
minimum of fsv ,Vd.]

The influence ofk is generally to increase the range of the
pull force F as can be easily anticipated and to decrease the
associated time scale.

It may be desirable to comment on the similarity of the
nature of the force waveforms displayed by the model equa-
tions with those seen in experiments. As mentioned in the
Introduction, apart from qualitative statements on the wave-
forms in Ref.[1] (such as periodic, sawtooth etc., which are
seen in the model as well), it should be stressed that there is
a paucity of quantitative characterization of the waveforms.
In this respect, the study by Ganduret al. [3] fills the gap to
some extent. These authors have carried out a dynamical
analysis of the time series for various values of the pull ve-
locities(for a fixed value of the inertia corresponding to their
experimental roller tape geometry). In order to compare this
result, we have calculated the largest Lyapunov exponent for
a range of values ofI and V. The region of chaos is in the
domain of small pull velocitiesV whenI is small. The maxi-
mum Lyapunov exponent turns out to be rather high, typi-
cally around 7.5 bits/s in contrast to the small values re-
ported in Ref. [2]. The large magnitude of the positive
exponent in our case can be traced to the large changes in the
Jacobian, asdfsv ,Vd /dv varies over several order of magni-
tude s,106d as a function of the peeling velocity and hence
as a function of time. In contrast, Honget al. use anN

FIG. 5. (a) A plot of Fstd for V=4 andI =10−2. (b) Correspond-
ing plot of astd. The inset shows an expanded plot of decreasing
trend ofastd. (c) Corresponding plots of phase space trajectory that
reflects the chaotic nature and(d) the peel velocityvstd. (v ,V are in
m/s, F in N, I in kg m2, andt in s.)
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shaped curve wheredfsv ,Vd /dv is constant(and small) on
both low and highV branches. However, these large values
of Lyapunov exponents are consistent with rather high values
obtained by Ganduret al. [3] from time series analysis of the
pull force. We also find chaos for intermediate and high in-
ertia in the region of high velocities where the value of the
Lyapunov exponent is small, typically 0.5. The small value
here again can be traced to the small changes indfsv ,Vd /dv
at high velocities.

It must be mentioned that comparison with experiments is
further complicated due to the presence of a two parameter
family of solutions strongly dependent on bothI andV. Thus
the phase diagram is complicated, i.e., the sequence of solu-
tions encountered in theI-V plane as we changeV or I or
both does not in general display any specific ordering of
periodic and chaotic trajectories(see Fig. 1 of Ref.[21])
usually found in the well known routes to chaos.(For in-
stance 2n periods should be observed before the odd periods
[22].) Indeed, in our model, we find the odd periods 3,5,7
etc., on increasingV (or I), without seeing all the 2n periods.
(These odd periods also imply chaos at parameter values
prior to that corresponding to these periods.) In view of this,
a correct comparison with experiments requires an appropri-
ate cut in theI-V plane consistent with the experimental
values ofI andV even where they are given. However, as the
values ofI are not provided, full mapping of chaotic solu-
tions is not possible.(We also note that Ganduret al. [3] use
a different tape from that used in Ref.[1], as is clear from the
instability range, leading additional difficulties in compari-
son.)

One quantitative result that can be compared with experi-
ment is the decreasing trend of the force drop magnitude. We
have calculated the magnitude of the force drops during
stick-slip phase as a function of the pull velocityV for both
low sI =10−5d and high sI =10−2d inertia cases. Figure 6
shows the monotonically decreasing trend of averageDFstd
as V is increased, for both small and largeI, a feature ob-
served in experiments[1]. These two distinct behaviors are a
result of the dynamization offsv ,Vd as in Eq.(14).

Finally, as another illustration of the richness of the dy-
namics seen in our numerical simulations, we show in Fig. 7,

a plot of an orbit that sticks to unstable part of the manifold
before jumping back to theAB branch. Such solutions are
known as canards[23]. Though canard type of solutions are
rare, we have observed them for high values ofI and low
values ofV. In our case, such solutions are due to the com-
petition of time scale due to inertia and that due tov. This
again illustrates the influence of inertia of the roll on the
dynamics of peeling.

It is clear that these equations exhibit rich and complex
dynamics. A few of these features are easily understandable,
but others are not. For instance, the sawtooth form ofF for
low inertia and low pull velocity can be explained as result-
ing from the trajectory sticking to stable part offsv ,Vd and
jumping only when it reaches the limit of stability. For these
parameter values, as the time spent by the system is negli-
gible during the jumps between the branchesAB and CD
(and vice versa), the system spends most of the time on the
branchAB and much less onCD due to its steep nature.
Then, from Eq.(9), it is clear that we should find a sawtooth
form whenever the peel velocityv jumps across the branch
to a value ofv larger than the pull velocityV.

However, several features exhibited by these system of
equations are much too complicated to understand. We first
list the issues that need to be explained.

(I) Small I.
(a) We find high frequency tiny oscillations super-

posed on the linearly increasingF [on the AB branch or
better seen in thea plot Fig. 3(c)]. This needs to be under-
stood.

(b) The numerical solutions show that the influence of
inertia can be importanteven for small Iand smallV. For
instance, the jumps betweenAB andCD branches occur even
beforeF reaches the extremum values off.

(II ) For intermediate and high values of inertia, for lowV
case.

(a) We observe several relatively small amplitude saw
tooth form ofF on the descending part of the pull forceF.
These appear as a sequence of jumps between the two
branches in thev-F plane which we shall refer to as the
“jumping mode.” A proper estimate of the magnitude ofDF
is desirable.

(b) In addition, there appears to be a critical value ofF
for a given cycle below which the return jumps fromAB to
CD stop and one observes a monotonically increasing trend
in F [ab in Fig. 4(c)].

FIG. 6. The plot shows the mean force dropDF as a function of
the pull speedV, for two distinct values ofI. The dashed line
corresponds toI =10−2 while the dotted line corresponds toI
=10−5. (v ,V are in m/s,F in N, I in kg m2, andt in s.)

FIG. 7. A phase plot of canard type of solution inv-F plane for
V=0.4 andI =10−3. (v ,V are in m/s,F in N, I in kg m2, andt in s.)
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(III ) High I and highV.
(a) The jumps between the branches occur at a very

high frequency[Fig. 5(c)] and now are located near the ex-
tremum values ofF and a. But these regions are separated
by a stretch where the orbit monotonically increases on the
AB branch and monotonically decreases on theCD branch.
We need to elucidate the underlying causes leading to the
switching between the jumping mode and monotonically in-
creasing or decreasing mode.

(b) For largeV, sayV=4 and largeI (Fig. 5), the ex-
tent of values ofFstd range between 185 and 450 much be-
yond fsv ,4d whose range is around 300. This feature is less
dominant for smallI and smallV case.

V. APPROXIMATE ANALYSIS OF THE DYNAMICS

As the dynamics is described by a coupled set of differ-
ential equations with an algebraic constraint, the results are
not transparent. We first attempt to get insight into the com-
plex dynamics through some simple approximations valid in
each of the regimes of the parameters. Solution of these ap-
proximate equations will require appropriate initial values
for the relevant variables which will be provided from the
exact numerical solutions. Due to the nature of approxima-
tions, the results are expected to capture only the trend and
order of magnitudes of the effects that are being calculated.
But as we will show, even the numbers obtained match quite
closely with the exact numerical results.

Our idea is to capture the dynamics through a single equa-
tion (as far as possible or at most two as in the highI andV
case) by including all the relevant time scales and solve the
relevant equationon each branch.For this we note that the
equations fora andv play a crucial role as the inertial con-
tribution appears only through Eqs.(6) and (7) and the time
spent by the system is controlled by the equation forv, Eq.
(12). Using Eqs.(6) and (7), we get

ä = −
FstdRa

I
− v̇/R. s15d

The general equation fora can be written down by using Eq.
(12), in Eq. (15), we get

ä = −
FRa

I
−

fḞs1 + ad + Fȧg
Rf8

, s16d

.−
FRa

I
−

fḞ + Fȧg
Rf8

. s17d

In obtaining Eq.(17), we have used 1+a.1 which is valid
except for highI and highV. Further, in most cases, we can

drop Raȧ as the magnitude of this term is small and useḞ
.ksV−vd. To be consistent we useFstd.Fin+ksV−vdt. We
note however that even for highI and highV wherea is not
small, dropping 1+a andRaȧ causes only 10% error.

Case I, smallI

On the low velocity branchAB, asv /R is small in Eq.(6),
we can dropv̇ term in Eq.(15). Thus,

Iä < − FRa. s18d

Note that for the low inertia case, sina<a approximation is
clearly justified[see Eq.(7)]. Using this equation, we first
get an idea of the relevant time scales asI is increased.

Case a

Consider the low velocity branchAB where the small am-
plitude high frequency oscillations are seen on the nearly
linearly increasing part ofF [given byFstd=Fmin+ksV−vdt,
see for instance Fig. 3(b)]. A rough estimate of the time spent
on this branch is obtained bysfmax− fmind /kV, t. Using
fmax,284 andfmin,200 [from Fig. 3(b)], we get t=0.084
(compared to the correct value of 0.063 which we shall ob-
tain soon) which is much larger than the period of the high
frequency oscillation. Thus, we could take the local valueF
for the purpose of calculating the period of the high fre-
quency oscillation. Consider the orbit at the lowest value of
F for which we can useFmin, fminsv ,1d,200. Then using
Eq. (18), the frequencyn=ÎsFR/sId /2p=225 for I =10−5

which gives the period of oscillationT=4.44310−3. This
agrees very well with the exact numerical valueT=4.1
310−3. This frequency decreases when the force reaches the
maximum valueFmax, fmaxsv ,1d,284 to n=261 giving T
=3.69310−3 which is again surprisingly close to the numeri-
cal value 3.72310−3. In the numerical solutions, we find that
the period gradually decreases[see Fig. 3(c)]. This feature is
also easily recovered by usingF=Fmin+ksV−vdt. This leads
to an additional term in the equation of motion fora in Eq.
(18),

Iä = − FstdRa/I = − fFmin + ksV − vdtgRa/I , s19d

wheret is the time required forF to reachFmax starting from
Fmin. Here again thev term can be dropped. IfFmin was
absent, the equation has the Airy’s form.(Note that for this
case also we could assumeFmin, fmin and Fmax, fmax.)
Though this equation does not have an exact solution, we
note that we could takea to have a sinusoidal form with
2pn=ÎsFR/sId where F is treated as a slowly increasing
parameter.(This assumption works quite well.) The above
equation captures the essential features of the numerical so-
lution. The numerical solution of Eq.(19) (as also this rep-
resentation) gives the decreasing trend of the small ampli-
tude high frequency oscillations.(Note that the Airy equation
itself gives a decreasing amplitude[24].)

We note that Eq.(18) is valid on theAB branch wherev is
small even for high inertia and smallV case. Thus, we may
be able to recover the gross time scales using this equation.
Our numerical results show that as we increase the inertia,a
exhibits a sinusoidal form on theAB branch[see Fig. 4(b)],
although one full cycle is not seen. We note that though the
value ofa is much larger than that for smallI, we can still
use the above equations[Eqs.(18) and(19)]. On this branch
F increases from a valueFmin, fmin to a maximumFmax
, fmax. For largeI =10−2 (andV=1), we get a rough estimate
of the period by using the mean value ofF,240 in Eq.(18).
This gives a periodT=0.128 which already agrees satisfac-
torily with the numerically exact valueT=0.11 considering
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the approximation used(i.e., using the meanF). A better
estimate can be obtained by using Eq.(19).

For the highI andV case, Fig. 5 forV=4 shows that the
wave forms are nearly sinusoidal except for a jitter at the top
and bottom. For this case,fsv ,4d is nearly flat over the entire
range of values ofv, with a value,300. Here, even on the
AB branch, we can not ignore thev̇ term in Eq.(15). How-
ever, one sees that asvmin=0.335 andvmax=1.25 which sug-
gest that to the leading order, we could ignore thev̇ term.
This gives the periodT=0.115. From Fig. 5(b), considering
only the monotonically decreasing partsabd, the value of
T/2=0.53 read off from the figure compares reasonably well
with this value.

For theCD branch, asv is not small, thev̇ /R term ap-
pears to be important in Eq.(15). Some idea of when this
term is important can be had by looking at the time scales
arising from inertia, namely,FR/ I and the coefficient of the
damping term,F /Rf8 in Eq. (17). Consider V=1 for I
=10−5 and 10−2. The period obtained by assuming the mean
value ofF=240 inFR/ I gives 4310−3 for I =10−5 compared
to 0.128 forI =10−2. These numbers can be compared with
the time scaleRf8 /F which is 0.01(where we have usedf8
,25 from numerical simulations forV=1). This shows that
for high inertia the damping coefficientF /Rf8 in Eq. (17) is
important. We will discuss this issue in more detail later.

Case b

Now we focus on the origin of jumps between the
branches. We note that the jumps fromCD to AB (or vice
versa) occur only when the peel velocityv reaches a value
where f8sv ,Vd=0. This also means that the time scale on
each branch, whether it spends only a short time or not, is
controlled by the equation forv. However, clearly the influ-
ence of inertia needs to be included. Here we present an
approximate equation forv which is valid in the various
limits of the parameters:

v̇ = fḞstd„1 + astd… + Fstdȧg/f8, s20d

.
ksV − vd + fFin + ksV − vdtgȧ

f8
, s21d

where the timet is time spent on the branch considered(low

or high V). In Eq. (21), we have again usedḞ.ksV−vd and
F.Fin+ksV−vdt with the same approximation used in Eq.
(17).

We now attempt to obtain correct estimates of the time
spent by the orbit on each branch starting with the least com-
plicated situation of the low inertia and smallV. For this
case, on the low velocity branch, one can use the sinusoidal
solution for a, namely,a=ain sins2pnt+fd, where f is a
phase factor which also includes the contribution arising
from the jump as well and 2pn=ÎsFR/sId with F.Fin

+kVt. Both ain andf needs to be supplied. Alternately, one
can use Eq.(18) with Eq. (21) for which we provideain and
ȧin at the point from the exact numerical solutions. We stress
that this procedure isnot equivalent to solving all the equa-
tions, as the only equation we use is Eq.(21) with the form

of a already determined from the equation fora. [We note
here that though we have used the sinusoidal form ofa along
with the initial conditions onain ,f, it is simpler to supply
the initial conditionsain ,ȧin and use Eq.(18).] We note here
that f8 is a crucial factor that determines the time at which
the orbit jumps from one branch to the other. Equation(21)
needs to be integrated fromvin to v f that are determined by
the pulling velocityV, i.e., the form offsv ,Vd.

For the lowv branchf8 term makes a significant contri-
bution for the time spent by the trajectory onAB. Indeed, one
can obtain the order of magnitude of the time spent by the
orbit on AB by using a crude approximation forf8sv ,1d
=−230s0.5−vd. This can be easily integrated fromv=vin

,0.0188, tov=v f ,0.4 which already givesDt=0.075. This
number is comparable to the numerically exact value 0.063.
A correct estimate can be obtained by usingf8 from Eq.(14)
with the sinusoidal forma or Eq. (18). (We have usedFin
=211.5 from the numerical simulations forV=1 and 2pn
=ÎfRFstd /fIg with F=Fin+ksV−vdt.) This gives nearly the
exact numerical value ofDt=0.063. In fact, this solution also
captures the oscillatory growth nature ofv quite accurately.
The approximate form ofvstd (continuous line) along with
the numerically exact solution(dotted line) are shown in Fig.
8. Using Dt in F=Fin+ksV−vdDt gives DF=63 and F
=274.5 which is in good agreement with the exact numerical
value ofFmax=275. It is interesting to note that this value is
much less thanfmax=283 [see Fig. 3(b)] or equivalentlyDF
is less thanfmax− fmin, what is also observed in our exact
numerical simulation. The underlying mechanism of jumping
of the orbit beforeF reachesfmax also becomes clear from
the analysis(Fig. 8). We note that the magnitude of the os-
cillatory component inv grows till it reachesvmax permitted
by fsv ,1d. Then, the orbit has to jump toCD. Thus, the
approximate solution gives an insight into the cause of the
orbit jumping even beforeF reachesfmax (for small I).

For theCD branch also, the dominant term isf8. Indeed,
any reasonable function which has the same geometrical
form of f shown in Fig. 2 will give good results forDt. Using

FIG. 8. Comparison of approximate solution(continuous) with
the numerically exact solution(dotted) of vstd for I =10−5 and V
=1 for theAB branch. The inset shows a similar comparison ofvstd
on theCD branch.(v ,V are in m/s,I in kg m2, andt in s.)
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the correct form off8, we getDt=0.005 which is close to the
exact result. This again gives correct magnitude ofDF
=72.5. In addition the nature of thevstd obtained by this
approximation is close to the exact numerical solution shown
in the inset of Fig. 8.

Case II, intermediate and high I and low V

The most difficult feature of our numerical solutions to
understand is the dynamical mechanism leading to a series of
drops in the pull force seen on the descending branch ofFstd
for intermediate and high values of inertia and for a range of
V values. Consider the high inertia and lowV case(say I
=10−2 andV=1) shown in Fig. 4. As stated earlier, there are
two different issues that need to be understood here. First,
the series of small force dropsDF and second the monotonic
increasing nature ofF on theAB branch.

In this case, as already discussed, the coefficient ofȧ,
namely,F /Rf8 term in Eq.(17) determines the time scale on
CD, while onAB, the termFRa / I dominates. Thus, the gen-
eral equation valid for this case is

ä . −
FRa

I
−

Fȧ

Rf8svd
, s22d

where we useF=Fin+ksV−vdt. [Note that we have dropped
ksV−vd term from Eq.(17) as this term does not have any
dependence ona or ȧ.]

We start with the cascading effect. Consider the orbit
when it is at the highest value ofFin=295.6 on theCD
branch for which we can dropFRa / I term. As f8 is a func-
tion of v, andF also depends on time, it appears that we need
to use coupled equationsȧ=−Fa /Rf8 with Eq. (21). How-
ever, the numerical solution of these equations show that one
can make further approximation by takingf8 to be constant
taken atv=15.54 andF=Fin, as the time spent on this branch
is very small. The error in using this approximation is within
10%. Indeed, usingain=−0.0304,ȧin=−160 and numerically
integrating Eq.(21), along with Eq.(22) from vin=15.54 to
v f =8.7 gives Dt=1.78310−3. This compares reasonably
with the numerical value of 1.89310−3. Using this we get
DF=19.4 which compares well with the numerically exact
value 19.8. At this point the orbit jumps to the low velocity
AB branch (to the point e). Thus, asDt is small, for all
practical purposes, we can ignore the dependence off on v
and F on t and usea to be an exponentially decreasing
function for analytical estimates. These analytical estimates
already give reasonably accurate numbers.

On theAB branch, the dominant time scale is determined
by FRa / I, and we can use the approximate sinusoidal form
in Eq. (21), or Eq. (18) along with Eq.(21) for the time
evolution from the pointe. Integrating fromvin=0.0188 to
v f =0.4 with the appropriate initial valuesain=0.239,ȧin
=11.9 (or a ,f) and Fin=276.53, givesDt=0.016 which
again compares very well with exact numerical valueDt
=0.0164. This givesDF=11.61. The procedure for calculat-
ing the time spent by the orbit onCD andAB is the same and
we find that successive values ofDF increases which is again
consistent with what is seen in Figs. 4(a) and 4(c).

Continuing this procedure, we find that a minimum value
of F=186.95 for the cycle is reached. Now consider the time
evolution of F on AB that should lead to a monotonically
increasing nature as seen in the numerically exact solution.
As this point corresponds to the point at which the dynamics
switches from the jumping mode to the monotonically in-
creasing nature ofF (i.e., the stretchab), we discuss this in
some detail. For the pointa, we have used the initial condi-
tion ain=0.0599,ȧin=9.7 and integrating Eqs.(18) and (21)
(or the sinusoidal form ofa) from v=vmin=0.0188 to v
=vmax=0.4 givesDt=0.117. This is nearly the value 0.114
obtained from the exact numerical integration. This gives
DF=117 andFmax=303.95 which compares very well with
the exact numerical value. In addition, the growth form ofv
obtained from this approximation(continuous line) agrees
very well with that of the exact numerical solution(dotted
line) as shown in Fig. 9. The discrepancy seen in the figure
can be reduced for instance if we include the terms neglected

in Eq. (16) such asḞ and using 1+a in Eq. (20).
Now we come to the crucial question. How does the sys-

tem know that it has to go froma to b, while just during the
previous visit to the pointk on AB branch lead only to a
small increase inDF [Figs. 4(a) and 4(c)] before jumping to
CD? To understand this, we recall that onAB, a sinusoidal
solution is allowed. First, one can notice a few differences in
the initial conditions between the pointa andk. For the point
k, the initial conditions taken from the exact numerical solu-
tion areain=0.298 andȧin=18.3sFin=193.37d, while for the
point a, ain=0.0589,ȧin=9.7. However, fora to begin a
sinusoidal form, the initial value ofȧ=18.3 is much higher
than the natural slope. The local slope for any sinusoidal
form is maximum when the variable is close to zero. In Fig.
4(b), the sinusoidal form starts whena is close to zero
(;0.0589 ata) where the local slope should be close to the
maximum value. Neara,0, the local slope is the product of
the maximum amplitude ofa, say, a0 (in the sinusoidal
stretchab) and 2pn. (We have assumeda=a0 sin 2pnt by
dropping the phase factor.) Thus, one should haveȧ
.2pna0 when a,0. Using the valuea0=0.23 from exact
numerical solution andn,6.88 atFin=186.95, we find that
ȧ,10 neara,0. Indeed, this is satisfied only ata where
ȧin=9.7. [Note thata is not symmetric around zero due to

FIG. 9. Comparison of the approximate solution(continuous
line) for vstd with numerically exact solution(dotted line) for V
=1,I =10−2. (v ,V are in m/s,I in kg m2, andt in s.)
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the presence ofv in Eq. (6) which has been ignored for the
purpose of present discussion.] However, ȧin=18.3 atk is
significantly higher than the slope permitted fora to start a
sinusoidal sojourn. This forces the orbit to make one more
small loop(AB to CD and back) so that the initial value of
ȧin is commensurate fora to start a sinusoidal form. Indeed,
the initial values ofȧ at all the earlier visits toAB branch
keep decreasing until it reaches a value that is consistent to
begin the sinusoidal growth. Once this is satisfied, the mono-
tonic increasing behavior froma to b is seen. As we will
show this is the mechanism operating for highI andV case.

Case III, high I and V

For this case, even on theAB branch,v̇ /R cannot be ig-
nored in Eq.(15) and thus one needs to use coupled Eqs.
(15) and (21). Calculations follow much the same lines and
give correct values forDt andDF on both the branches dur-
ing the rapid jumps.

Again, we need to answer when exactly does the system
know to switch from a rapid jumping mode to monotonically
increasing onAB or decreasing mode onCD?

Consider the last of the rapid jumps fromCD to AB (just
prior to the pointa) in Fig. 5(c). The corresponding point in
the a plot [Fig. 5(b)] is shown on an expanded scale in the
inset. From this figure, it is clear thatȧ has a positive slope
at k, though of small magnitude while ata, it has a value
−9.7. The latter is close to the natural(negative) slope ofa
when it begins the descending branch of the sinusoidal form.
On the other hand, the slope ofa is positive atk and hence
will not allow the growth to change over from a jumping
mode to the sinusoidal growth form fora. One can note that
the slopes at points of all the earlier visits toAB [see Fig.
5(b) inset] keep decreasing till the slope becomes negative
required for the monotonically decreasing trend ofa. This is
exactly the same mechanism forI =10−2 and V=1 also, for
the low v branch, except that in this case, even the sign of
the slope is incompatible for all the points prior toa in Fig.
5(c). The mechanism operating onCD (i.e., at the switching
from jumping mode to monotonically decreasing nature of
F) is essentially the same but arguments are a little more
involved and hence they are not presented.

Now, we consider the causes leading to the maximum and
minimum values taken byF being much more than permitted
by fsv ,Vd. As this is dominant forV=4, we illustrate this
using Figs. 5(a) and 5(c). We first note that Eq.(10) con-
strains the dynamically changing values ofFstd and astd to
the stationary values offsv ,Vd. Clearly, this implies thatF
= fsv ,Vd / s1+sinad. A rough estimate ofFmax can be ob-
tained by Fmax, fmax/ s1+amind with Fmin determined by
amax. This relation can be easily verified by using the nu-
merical values of a. For instance, for V=4 and I
=10−2, amin=−0.3 and fmax=307. This gives Fmax=438
while the numerical value from the phase plot for this case
gives 433 which is very close. Similarly, usingamax=0.62
and fmin=293, we getFmin=181 which compares well with
the numerical value of 180. We have verified this relation is
respected for various values ofV and I. For small I , a is
small, we should not find much difference between
Fmax sFmind and that off.

VI. SUMMARY AND CONCLUSIONS

We first summarize the results before making some rel-
evant remarks. We have carried out a study of the dynamics
of an adhesive roller tape using a differential-algebraic
scheme used for singular set of differential equations. The
algorithm produces stick-slip jumps across the two dissipa-
tive branches as a consequence of the inherent dynamics.
Our extensive simulations show that the dynamics is much
richer than anticipated earlier. In particular the influence of
inertia is shown to be dramatic. For instance, even at low
inertia, for small values ofV, the influence of inertia mani-
fests with jumps of the orbit occurring even beforeF reaches
fmax (or fmin) which is quite unexpected. More dominant is its
influence for highI both for low V and highV, though it is
striking for the latter case. Following the reasoning used in
the PLC effect, we introduce a dynamized curvefsv ,Vd as
resulting from competing time scales of internal relaxation
and imposed pull speed. The modified peel force function
leads to the decreasing trend in the magnitude ofDF with
increasing pull velocity, a feature observed in experiments.
We have also recaptured the essential features of the dynam-
ics by a set of approximations valid in different regimes of
the parameter space. These approximate solutions illustrate
the influence of various time scales such as that due to iner-
tia, the elasticity of the tape and that determined by the sta-
tionary peel forcefsv ,Vd. We also find the unusual canard
type of solutions.

Here, it is worthwhile to comment on the dynamical fea-
tures of the model. The numerical results themselves are too
complex to understand. A striking example of this is the se-
ries of force drops seen on the descending branch of the pull
force[Fig. 4(c)]. This result is hard to understand as it would
amount to a partial relaxation of the pull force. However, a
partial relaxation is only possible in the presence of another
competing time scale(other than the imposed time scale).
Another example is the jumping of the orbit for lowI case,
from AB to CD and vice versa even before the pull force
reaches the extremum values offsv ,Vd. For this reason, we
have undertaken to make this complex dynamics transparent
using a set of approximations. The basic idea here is to solve
a single equation(or at most two equations as in the highI
andV case) which incorporates all the relevant time scales.
This method not only captures all the results to within 10%
error but it also clearly brings out the regimes of parameter
space where these time scales become important. This analy-
sis also shows that the time scale due to inertia of the roller
tape shows up even for lowI which comes as a surprise as
one expects that for low inertia, the orbit should stick to the
stationary peel function.(Recall that for low inertia, equa-
tions have been approximated by Lienard type of equations
by Maugis and Barquins[1].) Our approximate equations
demonstrate that a crucial role in inducing the jumpseven at
low inertia is played by the high frequency oscillations re-
sulting from the inertia of the roller tape. As for high inertia
(both for low and high pull velocities), the time scale due to
inertia is responsible for the partial relaxation ofF as shown.

A few comments may be in order on the bursting type of
oscillations in the peel velocity. Bursting type of oscillatory
behavior are commonly seen in neurobiological systems
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[25]. Conventionally, bursting type oscillations arise in the
presence of homoclinic orbit[25]. Such bursting type of os-
cillations have also been modeled using one dimensional
map[26]. However, it is clear that the mechanism for burst-
ing type of oscillations in our case is different. In our case,
this arises due to the fact that the orbit is forced to jump
between the stable manifolds as a result of competing time
scale of inertia and the time scale for the evolution ofv. (We
note that the latter itself includes more than one time scale
[see Eq.(21)], namely, the contribution from the slopes of
the stable parts of the stationary curvefsv ,Vd and that due to
elasticity of the tape.) The bunching of the spikes inv is the
result of fsv ,Vd becoming flat for largeV and I. One other
comment relates to canard type solutions. Figure 7 shows
one such solution. As mentioned, these type solutions arise
from sticking to the unstable manifold. In fact, a similar type
of solution is seen in Fig. 5(c). As noted earlier, all the jumps
from CD to AB or vice versa always occur when the peel
velocity reaches the limiting value wheref8sv ,Vd=0. How-
ever, it can be seen from this figure, the orbit starting fromc
monotonically decreases well into the unstable part off.
Thus this solution also has the features of canards. It must be
stated that our approximate solutions cannot capture the be-
havior of canards.

Finally, the results presented in this paper are on the na-
ture of dynamics of the model equations which so far had
defied solution. However, comparison with experiments has
been minimal largely due to the paucity of quantitative ex-
perimental findings as stated earlier. Our analysis shows that
the model predicts periodic, sawtooth[1], as well as chaotic
solutions as reported in[3]. The high magnitude of the

Lyapunov exponents for the chaotic solutions in the low pull
velocities is consistent with that reported earlier[3]. We note
that the other quantitative experimental feature reported by
Refs.[1,3] is the decreasing trend of the average force drop
magnitudes as a function of the pull velocity is also captured
by our model(Fig. 6), a result that holds for both low and
high inertia. This result is a direct consequence of the dy-
namization of the peel force function, i.e., dependence of the
peel force on the pull velocity. We note here that the complex
dynamics at high velocities(see Fig. 5) is a direct result of
the unstable part of dynamized curve,fsv ,Vd, shrinking to
zero. As the hypothesis of dynamization captures the de-
creasing trend of the force drops, it also suggests that the
underlying mechanism of competing time scales responsible
for the peel force depending on the pull velocity is likely to
be correct as in the PLC effect. Clearly, a rigorous derivation
of the peel force function from microscopic considerations
that includes the effect of the viscoelastic glue at the contact
point is needed to understand the dynamics appropriately.
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