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Dynamics of stick-slip in peeling of an adhesive tape
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We investigate the dynamics of peeling of an adhesive tape subjected to a constant pull speed. We derive the
equations of motion for the angular speed of the roller tape, the peel angle and the pull force used in earlier
investigations using a Lagrangian. Due to the constraint between the pull force, peel angle and the peel force,
it falls into the category of differential-algebraic equations requiring an appropriate algorithm for its numerical
solution. Using such a scheme, we show that stick-slip jumps emerge in a purely dynamical manner. Our
detailed numerical study shows that these set of equations exhibit rich dynamics hitherto not reported. In
particular, our analysis shows that inertia has considerable influence on the nature of the dynamics. Following
studies in the Portevin—Le Chatelier effect, we suggest a phenomenological peel force function which includes
the influence of the pull speed. This reproduces the decreasing nature of the rupture force with the pull speed
observed in experiments. This rich dynamics is made transparent by using a set of approximations valid in
different regimes of the parameter space. The approximate solutions capture major features of the exact
numerical solutions and also produce reasonably accurate values for the various quantities of interest.
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[. INTRODUCTION and a short time in the slip state, and is usually seen in
o ) _ systems subjected to a constant response where the force
Pee“ng is a kind of fracture that has been studied eXpendeve'oped in the System is measured by dynamica”y cou-
mentally in the context of adhesion and is a technologicallypnng the system to a meaguring device. One common feature
important subject. Experimental studies on peeling of an adof such systems is that the force exhibits “negative flow rate
hesive tape mounted on a cylindrical roll are usually in con-characteristic{NFRC). Models which attempt to explain the
stant pull speed conditigii—6]. More recently, constant load dynamics of such systems use the macroscopic phenomeno-
experiments have also been reporf8¢d/]. Early studies by logical NFRC feature as an input, although the unstable re-
Bikermann[5], Kaeble [6] have attempted to explain the gion is not accessible. This is true for models dealing with
results by considering the system as a fully elastic objectthe dynamics of the adhesive tape as well. To the best of our
This is clearly inadequate as it ignores the viscoelastic naturknowledge, there is no microscopic theory which predicts the
of the glue at the contact surface and therefore cannot carigin of the NFRC macroscopic law except in the case of
ture many important features of the dynamics. The first dethe PLC effecf11,12 (see below. .
tailed experimental study of Maugis and Barquja$ show As there is a considerable similarity between the peeling
stick-slip oscillations within a window of pull velocity with ©f an adhesive tape and the PLC effect, it is useful to con-
decreasing amplitude of the pull force as a function of theSlder the similarities in some detail. The PLC effect refers to
pull velocity. Further, these authors report that the pull force? YP€ Of plastic instability observed when samples of dilute
shows sinusoidal, sawtooth and highly irregulenaotic as  210yS are deformed under constant cross head sgaals
these authors refer favave patterns with increasing veloci- 'I_'he e_ffect manifests |t_self n t_he form of a series of sefra-
. . . tions in a range of applied strain rates and temperatures. This
ties. More recently, Gandwt al. have carried out a dynami-

i . vsis of the f ; I feature is much like the peeling of an adhesive tape. Other
cal ime Series analysis of the Torce wavelorms, as Well 8gsatres common to these two situations are: abrupt onset of

thosef of acous::c emission ;lgparlls an?l replort' cha%tlc forc&e large amplitude oscillations at low applied velocities with

wr?ve orms _atft € upp$rhen Ol.t € pull ve F’C';}[@-h N€ 4 gradually decreasing trend and NFRC, which in the PLC
characteristic feature of the peeling process Is that the expelie refers to the existence of negative strain rate sensitivity
mental strain energy release rate shows two stable branChSFthe flow stress. In the case of the PLC effect, the physical

sepa}rat%d by a(;].unstablebbrar;ch. Stick—sliphbeha_\viir If? Con?)'rigin of the negative strain rate sensitivity is attributed to
monly observed in a number of systems such as jerky flow of, o aging of dislocations and their tearing away from the

the Portevin-Le ChateligPLC) effect[8], frictional sliding 5,40t solute atoms. Recently, the origin of the negative

"ERS has been explicitly demonstrated as arising from com-
eting time scales of pinning and unpinning in the Anan-
akrishna’s mode]11,13. In the case of adhesive tape, the

origin of NFRC can be attributed to the viscoelastic behavior

of the fluid. (Constant load and constant load rate experi-
*Present address: Weill Medical College of Cornell University, ments are possible in the PLC algVhile simple phenom-

New York, USA. enological models based on NFRC explain the generic fea-

TElectronic mail: garani@mrc.iisc.ernet.in tures of the PLC effedil4], there appears to be some doubts

stick-slip of tectonic plate$10]. Stick-slip is characterized
by the system spending most of the time in the stuck stat
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if the equations of motion conventionally used in the present
case of peeling are adequate to describe the velocity jumps
[2,4]. Indeed, these equations of motion are singular and
pose problems in the numerical solutions.

Apart from detailed experimental investigation of the
peeling process, Maugis and Barquji$, have also contrib-
uted substantially to the understanding of the dynamics of
the peeling process. However, the first dynamical analysis is
due to Hong and Yug2] who use an “N” shaped function to FIG. 1. Schematic plot of experimental setup.
mimic the dependence of the peel force on the rupture speed.

They showed that the system of equations exhibits periodigig. 1. An adhesive roll of radiuR is mounted on an axis
and chaotic stick-slip oscillations. However, the jumps in thepassing throughO normal to the paper and is pulled at a
rupture speed are introducedternallyonce the rupture ve- constant velocity/ by a motor positioned &b’ with a force
|0City exceeds the limit of Stabl'ltj4,l5_| Thus, the stick- F acting a|0ng:>o’_ Let the distance betwedén andO’ bel,

slip oscillations arenot obtained as a natural consequence ofand that between the contact poiito O’ beL. The pointP

the equations of motion. Therefore, in our opinion the resultsnoves with a local velocity which can undergo rapid bursts
presented in Refl2] are the artifacts of the numerical pro- in the velocity during rupture. The force required to peel the
cedure followed. Ciccottet al. [4] interpret the stick-slip tape is usually called the force of adhesion denoted. Gihe
jumps as catastrophes. Again, the belief that the jumps in thgvo measured branches referred to earlier, are those of the
rupture velocity cannot be Ob'talnled from the equations ofunction f in a steady state situation of constant pulling ve-
motion appears to be the motivation for introducing the acqocity (i.e., there are no accelerationghe lineL makes an
tion of discrete operators on the state of the system to interngle ¢ with the tangent at the contact poiRt The pointP
pret the stick-slip jump$4], though they do not demonstrate subtends an angle at O, with the horizontal lineDO’. We
the correctness of such a framework for the set of equationgjenote the elastic constant of the adhesive tape,bine
Lastly, there are no reports that explain the decrease in thglastic displacement of the tape bythe angular velocity by
amplitude of the peel force with increasing pull speed as, and the moment of inertia of the roll by The angular
observed in experiment#s there is a general consensus velocity itself is identified byw=a+v/R. The geometry of
that these equations of motion correctly describe the experithe setup givesL cosé=-Isine and L sin #=I cosa—-R
mental system, a proper resqlutlon of this question (on th@vhich further givesL.?=1?+R2-2IR cosa. The total velocity
absence of dynamical jumps in these equations) assumes iNi-at O’ is then made up of three contributiofl§, given by

portance. —u+iU=L. which ai
The purpose of this paper is to show that the dynamics o pru=k, which gives
stick-slip during peeling can be explained using a v=V+L-U=V-RcCosfa-0. (1)

differential-algebraic scheme meant for such singular situa-
tions [16] and demonstrate the rich dynamics inherent toFollowing standard methods in mechanics, it is straightfor-
these equations. In what follows we first derive the equationgvard to derive the equations of motion farand w by con-
of motion (used earlief2]) by introducing an appropriate sidering(«,«,u,u) as the generalized coordinates. The cor-
Lagrangian for the system. Then, we use an algorithm meanesponding Lagrangian of the system can be written as
to solve differential-algebraic equatiofis6] and present the
results of our simulations for various parameter values. One L, a,u,U) = l[w(a,a,u,U)]z— 'fuz_ )
of our major findings is that inertia has a strong influence on 2 2
the dynamics. In addition, following the dynamization
scheme similar to the one used in the context of the PL
effect [14], we suggest that the peel force depends on the
applied velocity. Using this form of peel force leads to the R=®(@,V) :f f(v,V)dv, 3
decreasing nature of the magnitude of the pull force as a
function of applied velocity. For certain values of the inertia, wheref(v,V) physically represents the peel force which we
we find canard type solutions. These numerical results argssume is dependent on rupture speed as well as the pull
captured to a reasonable accuracy using a set of approximgpeed assumed to be derivable from a potential function
tions valid in different regimes of the parameter space. Eve(y, V). The physical origin of this is due to the competition
though our emphasis is on demonstrating the correctness gktween the internal relaxation time scale of the viscoelastic
these equations of motion and richness of the inherent dyfiyid and the time scale determined by the applied velocity
namics that capture the qualitative feature_s of the peelingg]_ When the applied velocity is low, there is sufficient
process, we also attempt to make a comparison of the expefime for the viscoelastic fluid to relax. As we increase the
mental results mentioned above to the extent possible.  zppjied velocity, the relaxation of the fluid gets increasingly
Il. EQUATIONS OF MOTION difficult and thus behave§ much Iike_ an elastic substance.
The effect of competing time scales is well represented by
For the sake of completeness, we start by considering thBeborah numbef18] which is the ratio of time scale for
geometry of the experimental setup shown schematically irstructural relaxation to the characteristic time scale for defor-

éNe write the dissipation function as
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) ' ) K a=w-vlR, (6)
(@) i

400} O lo=FRcos#=-FRsina=-FRa, (7)
.‘:[

F=ku=k(V-v) -kcosf(wR-v), (8)

=k V-v+Raa], (9

with an algebraic constraint
F(1-cosh) - f(v,V) = F(1+a)-f(v,V)=0. (10

(The last equation results from the elimination of two second
order equations fow.) In Egs. (7), (9), and (10) we have
i i ] used co¥=-sina~—a. While Egs.(6)—«9) are differential
(b) equations, Eq(10) is an algebraic constraint necessitating
the use of differential-algebraic scheme to obtain the numeri-
cal solution[16].

The fixed point of Eqs(6), (7), (9), and(10) is given by

—
o
[\~
.
98- 20800.g08

2 _— a=0,0=VIR,v=V,F=1(V,V). (For numerical solution, in
) the above equations we have actually usedhsin place of
10'l ] a.) This point is stable forf’(V,V)>0 and unstable for
f'(V,V)<0. As V is varied such that the sign df(V,V)
" = = e 5 changes from negative to positive value, the system under-
10 10 10 v 10 10 goes a Hopf bifurcation and a limit cycle appears. The limit

cycles reflect the abrupt jumps between the two positive

FIG. 2. (a) Plots off(v,V) as a function of (x axis in log scalg slope branches of the functidi V)
v,V).

for V=1 (solid curvg, V=2 (dashed curve V=4 (dashed and dot-
ted curve, V=6 (dotted curvg see Eq.(14). (b) Experimental
strain energy release rat&(v) curve as in Ref[1]. [Units of

f(v,V) isin N, G(v) in J/?, andv,V are in m/s} IIl. ALGORITHM

The singular nature of these equations becomes clear if
mation. Indeed, in the studies on Hele-Shaw cell with mud asne were to consider the differential form of Ed0) given
the viscous fluid, one observes a transition from viscous finby
gering to viscoelastic fracturinfll9] with increasing rate of

invasion of the displacing fluid. - F(1 - cosé) + F(sin 6)6 11
As stated in the Introduction, the existing models do not v f'(v,V)[ ( ) +F( )01, (1)

explain the decreasing amplitude of pull force. Similar fea-

ture observed in the PLC serrations has been modeled using ~[F(1 +a) + Fa)/f’ (12)

a scheme referred to as dynamization of the negative strain

rate sensitivity SRS of the flow stresd(ep) [14,20, where  where the prime denotes the derivative with respect.to
€, is the plastic strain rate. Based on arguments similar to th&quation(11) with Egs.(6), (7), and(8) [or (9)] constitute
preceding paragraph, they modify this function to depend orthe full set of evolution equations for the vecter, w,F,v).
the applied strain rates,, i.e., the negative SRS of the flow However, it is clearly singular at points of extremum of
stress is taken to bHep, €,) such that the gap between the f(v,V), requiring an appropriate numerical algorithm.

maximum and the minimum of the functiof(e,,e,) de- We note that Eq96), (7), (8), and(10) can be written as
creases with increasing,. Following this, we considef to :
depend orV also, in a way that the gap ihdecreases as a MX = ¢(X), (13
functipn of the pull spee¥ (Fi_g. 2. ) whereX=(a,w,F,v), ¢ is a vector function that governs the
Using the Lagrange equations of motion, evolution of X andM is a singularmass matrix” [16] given
d (ac) JL IR _ by
dt\ga) e aa D @ 1000
o100
g(ﬁ)_£+ﬂ=0_ © M“oo1o0
dt\ su du  Ju 0000

We obtain the same set of ordinary differential equations ag&quation(13) is a differential-algebraic equatigibAE) and
in Ref. [2] given by can be solved using the so-called singular perturbation tech-
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nique [16] in which the singular matriXM is perturbed by 300

adding a small constant such that the singularity is re- @ B __C

moved. The resulting equations can then be solved numeri-

cally and the limit solution obtained as—0. We have 250

checked the numerical solutions fervalues ranging from w

10" to 10'°in some cases and the results do not depend on

the value ofe used as long as it is small. The results pre- 200

sented below, however, are fer10’. We have solved Eq. A

(13) using a standard variable-order solv@sTLAB ODE15S . ’ —— ’ /D

program. 150 5 -3 -1 1
We have parametrized the form &f,V) as 10 10 v 10 10
f(v,V) = 400°3%+ 1105+ 130e“* - 2V15- (415 : :

- 45V 04— 0.35/219,,05, (14) 290 [ (b) b
to give values of the extremum of the peel velocity that 260: c ]
mimic the general form of the experimental cunfés The W
measured strain energy release r&@/) from stationary i
state measurements is shown in Figb)2 The decreasing 230:
nature of the gap between the maximum and minimum of 5 d
f(v,V) for increasingV is clear from Fig. 2a). [The values 200 a Y
of f(v,V) could not be correctly determined &V) is in ” > > o X
J/n? requiring more details. However, the value B, is 10 10 10 v 10 10
closer to Ref[2] and the jumps irv are similar to those in
experimentd. The reason for using the form given by Eq. 0.1
(14 is that the effects of dynamization are easily included (c)
through its dependence on the pulling velocity while more 0.05
complicated terms are required to mimic completely the ex- ‘
perimental curveparticularly the flat portion However, we 3 |
stress that the trend of the results remains unaffected when
the actual experimental curve is used except for the magni- _0.05
tude of velocity jumps and the force values. )

-0.1
IV. RESULTS 4 t 41 4.2

We have studied the dynamics of the system of equations
for a wide range of values of the parameters. We have found
that transients for some regions of parameters space take 290 |
considerable time to die out. The results reported here are
obtained after these long transients are omitted. These equa- 270
tions exhibit rich dynamics, some even unanticipated. Here
we report typical results for two important parameters,
namely, the pull velocity/ (m/s) and the inertid (kg m?), 250¢
keeping the elastic constant of the take1000N/m, R
=0.1 m, and=1 m[2]. The influence ok will also be men- 230
tioned briefly.(Henceforth, we drop the units for the sake of
brevity) We find _that the observed jumps of the_ orbit in the FIG. 3. (a) A typical phase space trajectory in theF plane for
v-F plane occur in a fully dynamical way. More importantly, V=0.4,=10". The corresponding(u,V) is shown by a solid

we f|n(_1I all the three pOSS|_b|I_|t|es nam_e_ly, the orbit can Jumpcurve_(b) A phase space trajectory in theF plane forv=1.0 and
when it approaches the limit of stability, before or beyond, 45 (©) A plot of a(t) for V=1 andl=10"5. (d) A plot of F(t)

that permitted byf(v,V). The dynamics can be broadly clas- (period 4 for V=2 andl =105, (Units of v,V are in m/s,F in N,

4 1 4.1 4.2

sified into low, intermediate and high regimes of inertia. | jn kg n?, andt in s)
(i) Low inertia. Here also, there are three regimes: low,
intermediate, and high pull velocity. also shown by the continuous curve. We see that the trajec-
(a) Consider keeping inertid at a low value(say | tory jumps almost instantaneously froBhto C on reaching

=10"°) andV also at a low valugsay, near the top, say  the maximum off(v,V) (or from D to A when it reaches the
=0.4). Here we observe regular saw tooth form for the pullminimum). The system spends considerably more time on
force F. The phase plot in thE-v plane is as shown in Fig. AB compared to that o€D. However, this feature of jump-
3(a) (dotted curvg The corresponding functiofi(v,V) is  ing of the trajectory at the limit of stability is only true for
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small values of and whenV is near the limit of stability. At ' ' ' '

slightly higher pull velocity, say/=1, even for small, say 3001 (a) ? c ]
1=10°, the jumps occur even before reaching the top or I / 9 |
bottom(the pointsB andD) as can be seen from Fig(8 for ‘

V=1. The small amplitude high frequency oscillations seen 260 |
in the phase plotgFigs. 3a) and 3b)] on the branclAB are

due to the inertial effect, i.e., finite value bfThese oscilla- w | 4,>é/

tions are better seen on thét) plot shown in Fig. &). For

\
1Y
\
these values of parameters, the system is aperiodic. 220+ \

(b) As we increas®/, even as the saw tooth form Bf
is retained, various types of periodic orbjfgeriod 4 shown [ Kk Y
in Fig. 3(d) for V=2] as well as irregular orbits are seen. In AW x x x % wx A x wx 4
both casesgperiodic as well as chaotiche trajectory jumps 180 |
from high velocity brancHCD) to the low velocity branch 3
before traversing the entire branch or sometimes going be- 10
yond the values permitted by The value ofF at which the
orbit jumps is different for different cycles. For 107, at 0.3 ")
high velocity, sayw=4, the phase plot is periodic. (0)

(i) Intermediate and high inertia.

(@) As the results of smaW for intermediate and high 0.1
inertia are similar, we illustrate the results for 102 and 3 8 b a
V=1. Thev-F phase plotw, F, andv are shown in Figs.
4(a)—4(d). Consider Fig. éa) showing a typical phase space
trajectory for a single cycle. The corresponding function
f(v,V) is also shown by the thick continuous curve. We see -0.3 N N
that the maximumand minimum value of F is larger(or 39 4.05 t 42 435
smallep than that allowed byf(v,V). [This feature holds
when the inertia is in the intermediate regime also, though
the values of maximaminima) of F are not significantly
larger(les9 thanf ,.{fmin) -] When the trajectory jumps from
AB to CD at the highest value df for the cycle, the trajec-
tory stays orCD for a significantly shorter time compared to
the small inertia casé =10°°) and jumps back t&AB well 260 |
before F has reached the minimum dfv,V), i.e., AF is w
much smaller thanf, .~ fmin- The pull force F cascades
down through a series of back and forth jumps between the
two branches till the lowest value df for the cycle is
reached. Note tha at the pointn is less tharf ;.. For the
sake of clarity, two different portions of the trajectory are
markedabcdefgandijkimna corresponding to the top and 180}
bottom regions of the plot. The corresponding points are also —
identified on the(t) plot. After reachingn, the orbit jumps 3.9 4.05 t 4.2 4.35
to a on AB, the trajectory decides to move up all the way till
F reaches a maximum valuéarger thanf,,, the pointb) 18 . . . . . . .
without jumping to theCD branch. This part oF as a func- I (d)]
tion of time, which is nearly linear oAB (i.e., the segment 12}
ab) displays a noticeable sinusoidal modulation. The sinu-
soidal form is better seen i [Fig. 4b)]. Note that the >
successive drops i are of increasing magnitude. The
jumps between the two branches in th€ plane are seen as
bursts ofv [Fig. 4d)]. For these values of parameters, the
system is periodic. . _ .

(b) As we increas®/, the sinusoidal nature ¢f and « 4 4.1 t 42 43 4.4
becomes more clear with its range becoming larger reaching

a nearly sinusoidal a/=4 for largel. [The rangeab in Fig. FIG. 4. (a) Phase space trajectory in the~ plane for a single
4(c) expands. Compare Fig(®.] The average magnitude of cycle forI=102 andV=1. The correspondiné(v,V) is shown by
AF on theCD branch for smalV and moderately or large  a thick solid curve(b) Corresponding plots of(t), (c) the pull
gradually decreases with increasiigThe magnitude oAF  force F(t) (period 8§, and(d) the peel velocity(t). (Units of v,V
itself decreases dds increased. In the limit of large andl, are in m/s,Fin N, | in kgm?, andt in s)

10° 10" y 10°

300}

220}
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450
350}
W
250}
150 :
4 t 42 4.4
0.8 ]
(b)

450

350

250

150¢

10

10

FIG. 5. (a) A plot of F(t) for V=4 andl =102 (b) Correspond-

PHYSICAL REVIEW E 70, 046223(2004)

the drops inF and « become quite small which are now
located near the maxima and minima of these curves. This is
shown in Figs. Ba) and %b). The sinusoidal nature is now
obvious even irF(t) unlike for smallerV and| where it is
clear only ina(t) for the lowv branch. Note that fov=4,

the nature off(v,4) is nearly flat. This induces certain
changes in the-F phase plot that are not apparentdrand

a. The jumps between the two branches are now concen-
trated in a dense band at low and high values-ofn this
case, the maximuniminimum) value of F is significantly
larger (lesg than f ,ax (fmin)- These rapid jumps between the
branches manifest as jitter at the top and bottorf aihd «.

Unlike for smallV [Fig. 4], the nature of the trajectory
in Fig. 5c) is different. After reaching a critical value &f
near the maximum value &f (the pointb), the orbit spirals
upwards and then descends down till another critical value of
F (the pointc) is reached. Having reachedthe orbit mono-
tonically comes down tild where it jumps to thé\B branch.
Beyond this point, it again spirals upwards till the paanis
reached. Thereafte= monotonically increases tilb is
reached. The regionab and cd are the regions wher&
shows a near sinusoidal form. The regiditsandda are the
regions where the orbit jumps between the branches rapidly.
These manifest themselves as burstsvofvhich tend to
bunch together almost into a barf@ompare Fig. &) with
Fig. 5d).] It is interesting to note that the jumps between the
two branches occur exactly at points wheliddv =0, even
when the maximungminimum) of F are higherlower) than
that allowed by the stationary cunfév,V). The variables
are aperiodic for the set of parameters. The phase plots ap-
pear to be generated by an effectif@,V) that is being
cycled. [This visual feeling is mainly due to the fact that
jumps between the branches still occur at the maximum and
minimum of f(v,V).]

The influence ok is generally to increase the range of the
pull force F as can be easily anticipated and to decrease the
associated time scale.

It may be desirable to comment on the similarity of the
nature of the force waveforms displayed by the model equa-
tions with those seen in experiments. As mentioned in the
Introduction, apart from qualitative statements on the wave-
forms in Ref.[1] (such as periodic, sawtooth etc., which are
seen in the model as wgliit should be stressed that there is
a paucity of quantitative characterization of the waveforms.
In this respect, the study by Gandetral. [3] fills the gap to
some extent. These authors have carried out a dynamical
analysis of the time series for various values of the pull ve-
locities (for a fixed value of the inertia corresponding to their
experimental roller tape geomejryn order to compare this
result, we have calculated the largest Lyapunov exponent for
a range of values of andV. The region of chaos is in the
domain of small pull velocitie¥ whenl is small. The maxi-
mum Lyapunov exponent turns out to be rather high, typi-
cally around 7.5 bits/s in contrast to the small values re-
ported in Ref.[2]. The large magnitude of the positive

ing plot of a(t). The inset shows an expanded plot of decreasingEXPonent in our case can be traced to the large changes in the
trend ofa(t). (c) Corresponding plots of phase space trajectory thaJacobian, aslf(v,V)/dv varies over several order of magni-

reflects the chaotic nature atd) the peel velocity(t). (v,V are in

m/s,Fin N, | in kgm?, andt in s)

tude (~10°) as a function of the peeling velocity and hence
as a function of time. In contrast, Horgt al. use anN
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FIG. 7. A phase plot of canard type of solutionufF plane for

FIG. 6. The plot shows the mean force didp as a function of  V=0.4 andl=1073. (v,V are in m/sFin N, I in kg m? andtin s)

the pull speedv, for two distinct values ofl. The dashed line

corresponds tol=10"2 while the dotted line corresponds to
=10°. (v,V are in m/sF in N, | in kg m?, andt in s)

a plot of an orbit that sticks to unstable part of the manifold
before jumping back to théB branch. Such solutions are
known as canardg23]. Though canard type of solutions are
shaped curve wheréf(v,V)/dv is constantand smalj on ~ rare, we have observed them for high valued @ind low
both low and highV branches. However, these large valuesvalues ofV. In our case, such solutions are due to the com-
of Lyapunov exponents are consistent with rather high valueBetition of time scale due to inertia and that duevtoThis
obtained by Ganduet al. [3] from time series analysis of the again |_Ilustrates Fhe influence of inertia of the roll on the
pull force. We also find chaos for intermediate and high in-dynamics of peeling. _ o
ertia in the region of high velocities where the value of the It is clear that these equations exhibit rich and complex
Lyapunov exponent is small, typically 0.5. The small valuedynamics. A few of thes_e features are easily understandable,
here again can be traced to the small changet(n, V)/dv but others are not. For instance, the sawtooth forrx é6r
at high velocities. low inertia and low pull velocity can be explained as result-
It must be mentioned that comparison with experiments i¢"d from the trajectory sticking to stable part fi,,V) and
further complicated due to the presence of a two parametd#Mping only when it reaches the limit of stability. For these
family of solutions strongly dependent on botandV. Thus ~ Parameter values, as the time spent by the system is negli-
the phase diagram is complicated, i.e., the sequence of sol@iPlé during the jumps between the branchs and CD
tions encountered in theV plane as we change or | or (and vice versp the system spends most_of the time on the
both does not in general display any specific ordering o Laenncr:‘ﬁo?nalznc?(guif?s Iflzsarqcrrg?veeuzhtgu;}jsfif]tgzpsgv?/%ﬁh
eriodic and chaotic trajectorigsee Fig. 1 of Ref[21 X ! i
Ssually found in the weIJI knov;(n routeg to chaojgo[r |31) form whenever the peel velocity jumps across the branch

. . to a value ofv larger than the pull velocity.
stance 2 periods should be observed before the odd periods | feat hibited by th t i
[22].) Indeed, in our model, we find the odd periods 3,5,7 owever, several featires Bxmbiiea by these system 2

; i . i ; equations are much too complicated to understand. We first

etc., on increasiny (or I), without seeing all the 2periods.  |ist the issues that need to be explained.

(These odd periods also imply chaos at parameter values (1) small|.

prior to that corresponding to these perigds.view of this, (@ We find high frequency tiny oscillations super-

a correct comparison with experiments requires an approprposed on the linearly increasirfig [on the AB branch or

ate cut in thel-V plane consistent with the experimental petter seen in ther plot Fig. 3c)]. This needs to be under-

values ofl andV even where they are given. However, as thestood.

values ofl are not provided, full mapping of chaotic solu- (b) The numerical solutions show that the influence of

tions is not possiblg\We also note that Gandet al. [3] use inertia can be importangven for small land smallV. For

a different tape from that used in R¢t], as is clear from the instance, the jumps betwe&B andCD branches occur even

instability range, leading additional difficulties in compari- peforeF reaches the extremum valuesfof

son) (I For intermediate and high values of inertia, for [&wv
One quantitative result that can be compared with expericase.

ment is the decreasing trend of the force drop magnitude. We (a) We observe several relatively small amplitude saw

have calculated the magnitude of the force drops duringpoth form of F on the descending part of the pull forge

stick-slip phase as a function of the pull velocityfor both These appear as a sequence of jumps between the two

low (1=10) and high (1=10"% inertia cases. Figure 6 pranches in the;-F plane which we shall refer to as the

shows the monotonically decreasing trend of averagét) “jumping mode.” A proper estimate of the magnitudeAdt

asV is increased, for both small and largea feature ob- is desirable.

served in experimentd]. These two distinct behaviors are a (b) In addition, there appears to be a critical valué-of

result of the dynamization dfiv,V) as in Eq.(14). for a given cycle below which the return jumps frohf to
Finally, as another illustration of the richness of the dy-CD stop and one observes a monotonically increasing trend

namics seen in our numerical simulations, we show in Fig. 7in F [ab in Fig. 4(c)].
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(1M High I and highV.
(@) The jumps between the branches occur at a very ) ) ) S
high frequency[Fig. 5c)] and now are located near the ex- Note that for the low inertia case, si= o approximation is
tremum values of and a. But these regions are separatedCléarly justified[see Eq.(7)]. Using this equation, we first
by a stretch where the orbit monotonically increases on th@et an idea of the relevant time scalesl as increased.
AB branch and monotonically decreases on @i branch.
We need to elucidate the underlying causes leading to the
switching between the jumping mode and monotonically in-
creasing or decreasing mode.

l& ~ - FRa. (18)

Case a

Consider the low velocity branchB where the small am-
(b) For largeV, sayV=4 and largd (Fig. 5, the ex- plitude high frequency oscillations are seen on the nearly

tent of values of~(t) range between 185 and 450 much be_linearly increasing part of [given by F()=Fin+k(V-0)t,

; - - for instance Fig.(B)]. A rough estimate of the time spent
ond f(v,4) whose range is around 300. This feature is les$€€ 10 . X )
zominant for small ang smallV case. on this branch is obtained byf . fmin)/kV~1t. Using

fmax~ 284 andf,i,~ 200 [from Fig. 3b)], we gett=0.084
(compared to the correct value of 0.063 which we shall ob-
tain soon which is much larger than the period of the high
As the dynamics is described by a coupled set of differfrequency oscillation. Thus, we could take the local vefue
ential equations with an algebraic constraint, the results arfor the purpose of calculating the period of the high fre-
not transparent. We first attempt to get insight into the comguency oscillation. Consider the orbit at the lowest value of
plex dynamics through some simple approximations valid inF for which we can usé,;,~ fin(v,1) ~200. Then using
each of the regimes of the parameters. Solution of these ajEEq. (18), the frequencyr=+/(FR/1)/27=225 for =105
proximate equations will require appropriate initial valueswhich gives the period of oscillatio =4.44x 1073, This
for the relevant variables which will be provided from the agrees very well with the exact numerical vallie4.1
exact numerical solutions. Due to the nature of approximas: 1073, This frequency decreases when the force reaches the
tions, the results are expected to capture only the trend an@laximum valueF .~ fmaxv, 1) ~ 284 to v=261 giving T
order of magnitudes of the effects that are being calculated: 3 69x 102 which is again surprisingly close to the numeri-
But as we will show, even the numbers obtained match quitgal value 3.7 1073, In the numerical solutions, we find that
closely with the exact numerical results. the period gradually decreasgsee Fig. &)]. This feature is
Our idea is to capture the dynamics through a single equag|so easily recovered by usitig F i, +k(V-0v)t. This leads

V. APPROXIMATE ANALYSIS OF THE DYNAMICS

tion (as far as possible or at most two as in the HigindV

to an additional term in the equation of motion f@rin Eq.

case by including all the relevant time scales and solve th(:','(lg)’

relevant equatiommn each branchFor this we note that the
equations fore andv play a crucial role as the inertial con-
tribution appears only through Eg®) and(7) and the time
spent by the system is controlled by the equationd/foEQ.
(12). Using Eqgs(6) and(7), we get

_ F(t)Ra
|

a= -vlR. (15

The general equation far can be written down by using Eq.
(12), in Eq. (15), we get

__FRa _[F(1+a)+Fa]
T Rf’ ’

(16)

FRa [F+Fa]

I Rf’

In obtaining Eq.(17), we have used 1&=1 which is valid
except for highl and highV. Further, in most cases, we can
drop Raa as the magnitude of this term is small and Fse
=k(V-v). To be consistent we uge(t) =F;,+k(V-v)t. We
note however that even for highand highV where« is not
small, dropping 1+ andRaa causes only 10% error.

. (17)

Case |, smalll

On the low velocity branci\B, asv/Ris small in Eq.(6),
we can drop term in Eq.(15). Thus,

(19

wheret is the time required foF to reachF,,, Starting from
Fmin- Here again they term can be dropped. IF;, was
absent, the equation has the Airy’s for(hote that for this
case also we could assunt&,i,~ fmin and Fra fmax)
Though this equation does not have an exact solution, we
note that we could taker to have a sinusoidal form with
2mv= V’TFR/I) where F is treated as a slowly increasing
parameter(This assumption works quite wellThe above
equation captures the essential features of the numerical so-
lution. The numerical solution of Eq19) (as also this rep-
resentatiol gives the decreasing trend of the small ampli-
tude high frequency oscillation@Note that the Airy equation
itself gives a decreasing amplitugi24].)

We note that Eq(18) is valid on theAB branch where is
small even for high inertia and small case. Thus, we may
be able to recover the gross time scales using this equation.
Our numerical results show that as we increase the inertia,
exhibits a sinusoidal form on th&B branch[see Fig. 4b)],
although one full cycle is not seen. We note that though the
value of « is much larger than that for smdll we can still
use the above equatiofisgs.(18) and(19)]. On this branch
F increases from a valu€,~ fmin 10 @ maximumF .«
~ fmax FOr largel =1072 (andV=1), we get a rough estimate
of the period by using the mean valuefof- 240 in Eq.(18).

This gives a period=0.128 which already agrees satisfac-
torily with the numerically exact valug=0.11 considering

l&=—-F(t)Rall = = [Fyin + k(V = 0)t]Ra1,
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the approximation used.e., using the mearF). A better 0.6
estimate can be obtained by using EP).

For the highl andV case, Fig. 5 foV=4 shows that the
wave forms are nearly sinusoidal except for a jitter at the top
and bottom. For this cas&(,4) is nearly flat over the entire
range of values of, with a value~300. Here, even on the
AB branch, we can not ignore theterm in Eq.(15). How-
ever, one sees that ag,;;=0.335 and,,,=1.25 which sug-
gest that to the leading order, we could ignore theerm.
This gives the period=0.115. From Fig. &), considering
only the monotonically decreasing padb), the value of
T/2=0.53 read off from the figure compares reasonably well
with this value.

For theCD branch, ag is not small, thev/R term ap-
pears to be important in E¢l5). Some idea of when this
term is important can be had by looking at the time scales

0.4

0.2}

O 1 I
0 0.02 t 0.04 0.06

arising from inertia, namelysR/1 and the coefficient of the
damping term,F/Rf" in Eq. (17). ConsiderV=1 for |

FIG. 8. Comparison of approximate solutiécontinuou$ with
the numerically exact solutiofdotted of v(t) for 1=10"° and V

=107 and 102 The period obtained by assuming the mean=1 for theAB branch. The inset shows a similar comparisom (f

value of F=240 inFR/| gives 4x 1072 for | =10"° compared

on theCD branch.(v,V are in m/s,l in kg m?, andt in S.)

to 0.128 forl=10"2 These numbers can be compared with
the time scalRf’/F which is 0.01(where we have usefl

~ 25 from numerical simulations fov=1). This shows that
for high inertia the damping coefficieR/Rf" in Eq. (17) is
important. We will discuss this issue in more detail later.

of « already determined from the equation fer [We note
here that though we have used the sinusoidal foria along
with the initial conditions ong;,, ¢, it is simpler to supply
the initial conditionsa;,, o, and use Eq(18).] We note here
that f’ is a crucial factor that determines the time at which
the orbit jumps from one branch to the other. Equati@b)
needs to be integrated from, to v that are determined by
Now we focus on the origin of jumps between the the pulling velocityV, i.e., the form off(v,V).
branches. We note that the jumps frd@@D to AB (or vice For the lowv branchf’ term makes a significant contri-
versg occur only when the peel velocity reaches a value pytion for the time spent by the trajectory AB. Indeed, one
where f'(v,V)=0. This also means that the time scale oncan obtain the order of magnitude of the time spent by the
each branch, whether it spends only a short time or not, igrbit on AB by using a crude approximation fd¥(v,1)
controlled by the equation far. However, clearly the influ-  =-2300.5-v). This can be easily integrated froo=uv;,
ence of inertia needs to be included. Here we present an g 0188, tov=v;~ 0.4 which already givedt=0.075. This
approximate equation foo which is valid in the various number is comparable to the numerically exact value 0.063.
limits of the parameters: A correct estimate can be obtained by usfhdgrom Eq.(14)
with the sinusoidal formw or Eq. (18). (We have used,

Case b

v=[FOQ +a) + F(t)al/f’, (200 =211.5 from the numerical simulations fsf=1 and 2rv
_ =\[RF(t)/ 1] with F=F,,+k(V-v)t.) This gives nearly the
_k(V-v) +[Fpp +k(V-v)t]a (1) ©xact numerical value aft=0.063. In fact, this solution also

f/
where the timé is time spent on the branch consideféxv
or highV). In Eg. (21), we have again used=k(V-v) and
F=Fj,+k(V-v)t with the same approximation used in Eq. =274.5 which is in good agreement with the exact numerical
7). value of F,,,,=275. It is interesting to note that this value is

We now attempt to obtain correct estimates of the timemuch less thari,,,,=283[see Fig. &)] or equivalentlyAF
spent by the orbit on each branch starting with the least comis less thanf ..~ fmin, What is also observed in our exact
plicated situation of the low inertia and small For this  numerical simulation. The underlying mechanism of jumping
case, on the low velocity branch, one can use the sinusoidaf the orbit beforeF reachesf,,,, also becomes clear from
solution for «, namely, a=q, Sin(2mvt+$), where ¢ is a  the analysigFig. 8. We note that the magnitude of the os-
phase factor which also includes the contribution arisingcillatory component irv grows till it reaches ., permitted
from the jump as well and 2v= \RFR/ ) with F=F;, by f(v,1). Then, the orbit has to jump t€D. Thus, the
+kVt Both a;, and ¢ needs to be supplied. Alternately, one approximate solution gives an insight into the cause of the
can use Eq(18) with Eq. (21) for which we providew;, and  orbit jumping even befor& reached ., (for smalll).
aj, at the point from the exact numerical solutions. We stress For theCD branch also, the dominant termfis Indeed,
that this procedure iaot equivalent to solving all the equa- any reasonable function which has the same geometrical
tions, as the only equation we use is E&1) with the form  form of f shown in Fig. 2 will give good results fakt. Using

captures the oscillatory growth nature wfjuite accurately.
The approximate form oé(t) (continuous ling along with
the numerically exact solutiofdotted ling are shown in Fig.
8. Using At in F=F;;+k(V-v)At gives AF=63 and F
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the correct form of’, we getAt=0.005 which is close to the 0.6
exact result. This again gives correct magnitude Ad¥
=72.5. In addition the nature of the(t) obtained by this
approximation is close to the exact numerical solution shown

in the inset of Fig. 8.

0.4}
>

Case I, intermediate and highl and low V

0.2}
The most difficult feature of our numerical solutions to
understand is the dynamical mechanism leading to a series of
drops in the pull force seen on the descending brandf(Df .

for intermediate and high values of inertia and for a range of

V values. Consider the high inertia and ldwcase(say | t
=1(Tz_andV= _1) shown in Fig. 4. As stated earlier, there a_re FIG. 9. Comparison of the approximate soluticcontinuous
two d'fferem issues that need to be understood here. I?”’Sﬁne) for v(t) with numerically exact solutioridotted ling for V

the series of small force droge= and second the monotonic -1 1=102 (,,v are in m/s, in kg m?, andt in s,

increasing nature df on the AB branch.

In this case, as already discussed, the coefficiend,of Continuing this procedure, we find that a minimum value
namely,F/Rf term in Eq.(17) determines the time scale on of F=186.95 for the cycle is reached. Now consider the time
CD, while onAB, the termFRea/I dominates. Thus, the gen- evolution of F on AB that should lead to a monotonically
eral equation valid for this case is increasing nature as seen in the numerically exact solution.
As this point corresponds to the point at which the dynamics
switches from the jumping mode to the monotonically in-
creasing nature of (i.e., the stretctab), we discuss this in
some detail. For the poirat, we have used the initial condi-

where we usé& =F,+k(V-u)t. [Note that we have dropped tion a;,=0.0599 ¢,=9.7 and integrating Eqg18) and(21)
k(V-v) term from Eq.(17) as this term does not have any (or the sinusoidal form ofa) from v=vy;,=0.0188 tov
dependence o or &.] =Umax=0.4 givesAt=0.117. This is nearly the value 0.114
We start with the cascading effect. Consider the orbitobtained from the exact numerical integration. This gives
when it is at the highest value df,=295.6 on thecD  AF=117 andFp,=303.95 which compares very well with
branch for which we can dropRa/| term. Asf’ is a func-  the exact numerical value. In addition, the growth formyof
tion of v, andF also depends on time, it appears that we nee@Ptained from this approximatiotcontinuous ling agrees
to use coupled equatioris=—Fa/Rf with Eq. (21). How-  Very well with that of the exact numerical solutigdotted
ever, the numerical solution of these equations show that on#€) as shown in Fig. 9. The discrepancy seen in the figure
can make further approximation by takifigto be constant ¢an be reduced for instance if we include the terms neglected
taken at =15.54 and-=F;,, as the time spent on this branch in Eq. (16) such asF and using 1+ in Eq. (20).
is very small. The error in using this approximation is within ~ Now we come to the crucial question. How does the sys-

.
LETI
A DL Y A —

0.08

0

0 0.12

0.04

(22

10%. Indeed, using;,=-0.0304 g;,=-160 and numerically
integrating Eq(21), along with Eq.(22) from v;,=15.54 to
v¢=8.7 gives At=1.78xX 103 This compares reasonably
with the numerical value of 1.891073. Using this we get

tem know that it has to go frora to b, while just during the
previous visit to the poink on AB branch lead only to a
small increase in\F [Figs. 4a) and 4c)] before jumping to
CD? To understand this, we recall that 8B, a sinusoidal

AF=19.4 which compares well with the numerically exact solution is allowed. First, one can notice a few differences in

value 19.8. At this point the orbit jumps to the low velocity
AB branch (to the pointe). Thus, asAt is small, for all
practical purposes, we can ignore the dependendeoofv
and F on t and usea to be an exponentially decreasing

the initial conditions between the poiatandk. For the point
k, the initial conditions taken from the exact numerical solu-
tion area;,=0.298 andy;,=18.3(F;,=193.37, while for the
point a, «;,=0.0589 ¢;,=9.7. However, fora to begin a

function for analytical estimates. These analytical estimatesinusoidal form, the initial value of=18.3 is much higher

already give reasonably accurate numbers.

than the natural slope. The local slope for any sinusoidal

On theAB branch, the dominant time scale is determinedform is maximum when the variable is close to zero. In Fig.
by FRa/l, and we can use the approximate sinusoidal formd(b), the sinusoidal form starts whea is close to zero

in Eq. (21), or Eq. (18) along with Eq.(21) for the time
evolution from the point. Integrating fromv;,=0.0188 to
v;=0.4 with the appropriate initial valueg;,=0.239 g,
=11.9 (or «,¢) and F;,=276.53, givesAt=0.016 which
again compares very well with exact numerical vale
=0.0164. This give?\F=11.61. The procedure for calculat-
ing the time spent by the orbit ddD andAB is the same and
we find that successive values®dF increases which is again
consistent with what is seen in Figgajtand 4c).

(~0.0589 ata) where the local slope should be close to the
maximum value. Neat~ O, the local slope is the product of
the maximum amplitude oty, say, ag (in the sinusoidal
stretchab) and 27v. (We have assumed=qq Sin 27wt by
dropping the phase factpr.Thus, one should havex
=2mvay when a~0. Using the valuexy=0.23 from exact
numerical solution and~ 6.88 atF;,=186.95, we find that
a~10 neara~0. Indeed, this is satisfied only atwhere
a;,=9.7. [Note thata is not symmetric around zero due to
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the presence aof in Eqg. (6) which has been ignored for the VI. SUMMARY AND CONCLUSIONS

purpose of present discussipridowever, a;,=18.3 atk is We first summarize the results before making some rel-
significantly higher than the slope permitted i@rto start a  evant remarks. We have carried out a study of the dynamics
sinusoidal sojourn. This forces the orbit to make one moreyf an adhesive roller tape using a differential-algebraic
small loop(AB to CD and back so that the initial value of scheme used for singular set of differential equations. The
ajp Is commensurate for to start a sinusoidal form. Indeed, algorithm produces stick-slip jumps across the two dissipa-
the initial values ofa at all the earlier visits tcAB branch tive branches as a consequence of the inherent dynamics,
keep decreasing until it reaches a value that is consistent ©Qur extensive simulations show that the dynamics is much
begin the sinusoidal growth. Once this is satisfied, the monoricher than anticipated earlier. In particular the influence of
tonic increasing behavior frora to b is seen. As we will inertia is shown to be dramatic. For instance, even at low
show this is the mechanism operating for highndV case. inertia, for small values o¥/, the influence of inertia mani-
Case IIl, high | and V fests with jump_s of_the (_)rbit occurring even bef(ﬁ'e_each_es_
' . fmax (OF Tin) Which is quite unexpected. More dominant is its
For this case, even on theB branch,v/R cannot be ig- influence for highl both for low V and highV, though it is
nored in Eq.(15 and thus one needs to use coupled Egsstriking for the latter case. Following the reasoning used in
(15 and(21). Calculations follow much the same lines and the PLC effect, we introduce a dynamized cuive,V) as
give correct values foAt andAF on both the branches dur- resulting from competing time scales of internal relaxation
ing the rapid jumps. and imposed pull speed. The modified peel force function
Again, we need to answer when exactly does the systengads to the decreasing trend in the magnitude\Bfwith
know to switch from a rapid jumping mode to monotonically increasing pull velocity, a feature observed in experiments.
increasing orAB or decreasing mode 0@D? We have also recaptured the essential features of the dynam-
Consider the last of the rapid jumps frd@D to AB (just  ics by a set of approximations valid in different regimes of
prior to the pointa) in Fig. §c). The corresponding point in  the parameter space. These approximate solutions illustrate
the a plot [Fig. 5(b)] is shown on an expanded scale in thethe influence of various time scales such as that due to iner-
inset. From this figure, it is clear thathas a positive slope tia, the elasticity of the tape and that determined by the sta-
at k, though of small magnitude while @, it has a value tionary peel forcef(v,V). We also find the unusual canard
=9.7. The latter is close to the naturalegative slope ofa  type of solutions.
when it begins the descending branch of the sinusoidal form. Here, it is worthwhile to comment on the dynamica| fea-
On the other hand, the slope afis positive atk and hence  tyres of the model. The numerical results themselves are too
will not allow the growth to change over from a jumping complex to understand. A striking example of this is the se-
mode to the sinusoidal growth form far One can note that ries of force drops seen on the descending branch of the pull
the slopes at points of all the earlier visits A [see Fig.  force[Fig. 4(c)]. This result is hard to understand as it would
5(b) insef keep decreasing till the slope becomes negativeymount to a partial relaxation of the pull force. However, a
required for the monotonically decreasing trenchofThis is  partial relaxation is only possible in the presence of another
exactly the same mechanism for 1072 and V=1 also, for  competing time scalgother than the imposed time scale
the low v branch, except that in this case, even the Sign OtA\nother examp|e is the Jump|ng of the orbit for lowcase,
the slope is incompatible for all the points priorddn Fig.  from AB to CD and vice versa even before the pull force
5(c). The mechanism operating @D (i.e., at the switching  reaches the extremum valuesfdb,V). For this reason, we
from jumping mode to monotonically decreasing nature ofhaye undertaken to make this complex dynamics transparent
F) is essentially the same but arguments are a little morgsing a set of approximations. The basic idea here is to solve
involved and hence they are not presented. . a single equatiorior at most two equations as in the high
_Now, we consider the causes leading to the maximum angdnq\v/ casg which incorporates all the relevant time scales.
minimum values taken by being much more than permitted This method not only captures all the results to within 10%
by f(v,V). As this is dominant folv=4, we illustrate this  error but it also clearly brings out the regimes of parameter
using Figs. $a) and %c). We first note that Eq(10) con-  space where these time scales become important. This analy-
strains the dynamically changing valuesFit) anda(t) to  sjs also shows that the time scale due to inertia of the roller
the stationary values df(v,V). Clearly, this implies thaF  tape shows up even for lowwhich comes as a surprise as
=f(v,V)/(1+sina). A rough estimate of,, can be ob- one expects that for low inertia, the orbit should stick to the
tained by Frax~ fmax (1 +amiy) with Fo;, determined by stationary peel function(Recall that for low inertia, equa-
amax This relation can be easily verified by using the nu-tions have been approximated by Lienard type of equations
merical values of @. For instance, forV=4 and | by Maugis and Barquin$l].) Our approximate equations
=102, am,=-0.3 and f,,,=307. This givesF,=438 demonstrate that a crucial role in inducing the jurepen at
while the numerical value from the phase plot for this casdow inertia is played by the high frequency oscillations re-
gives 433 which is very close. Similarly, using,,,=0.62  sulting from the inertia of the roller tape. As for high inertia
and f,;,=293, we getF,;,=181 which compares well with (both for low and high pull velocitigs the time scale due to
the numerical value of 180. We have verified this relation isinertia is responsible for the partial relaxationFois shown.

respected for various values dfandl. For smalll, « is A few comments may be in order on the bursting type of
small, we should not find much difference betweenoscillations in the peel velocity. Bursting type of oscillatory
Fax (Fmin) and that off. behavior are commonly seen in neurobiological systems
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[25]. Conventionally, bursting type oscillations arise in the Lyapunov exponents for the chaotic solutions in the low pull
presence of homoclinic orbj25]. Such bursting type of os- velocities is consistent with that reported ear|ig}. We note
cillations have also been modeled using one dimensionahat the other quantitative experimental feature reported by
map[26]. However, it is clear that the mechanism for burst-Refs.[1,3] is the decreasing trend of the average force drop
ing type of oscillations in our case is different. In our case,magnitudes as a function of the pull velocity is also captured
this arises due to the fact that the orbit is forced to jumpby our model(Fig. 6), a result that holds for both low and
between the stable manifolds as a result of competing timgjgn inertia. This result is a direct consequence of the dy-
scale of inertia and the time scale for the evolutiomofWe  hamization of the peel force function, i.e., dependence of the

note that the latter itself includes more than one time scaI%ee| force on the pull velocity. We note here that the complex
[see Eq.(21)], namely, thg contribution from the slopes of dynamics at high velocitietsee Fig. % is a direct result of
the stable parts of the stationary curf¢e,V) and that due to the unstable part of dynamized cunéy,V), shrinking to

elasticity of the tap@.The bunching of the spikes imis the : o
result o¥f(v V) be?:%ming flat forgllarge/ angl One other 28 As the hypothesis of dynaml_zatlon captures the de-
comment rélates to canard type solutions I.:igure 7 show§casing trend of the force drops, it also suggests that the
one such solution. As mentioned, these tybe solutions aris nderlying mechanism of.competlng time scal_es .res.ponS|bIe
from sticking to the unstable manifold. In fact, a similar type or the peel fqrce depending on the pull Veloc'ty IS I|k¢Iy .to
of solution is seen in Fig.(8). As noted earlier, all the jumps be correct as in the PL.C effect. Clgarly, a r|.gorouslder|v§1t|on
from CD to AB or vice versa always occur when the peelof the peel force function from microscopic considerations
that includes the effect of the viscoelastic glue at the contact

velocity reaches the limiting value whefé&v,V)=0. How- = . .
ever, it can be seen from this figure, the orbit starting flom point is needed to understand the dynamics appropriately.

monotonically decreases well into the unstable partf.of

Thus this solution also_has the fea_ltures of canards. It must be ACKNOWLEDGMENTS
stated that our approximate solutions cannot capture the be-
havior of canards. The authors wish to thank A.S. Vasudeva Murthy of

Finally, the results presented in this paper are on the naFIFR, Bangalore for useful discussions on DAE algorithm.
ture of dynamics of the model equations which so far hadR.D. and A.M. wish to thank M. Bekele of Addis Ababa
defied solution. However, comparison with experiments hagJniversity, Ehiopia and M. S. Bharathi of Brown University,
been minimal largely due to the paucity of quantitative ex-USA for stimulating and friendly discussions. This work
perimental findings as stated earlier. Our analysis shows thatas financially supported by the Department of Science
the model predicts periodic, sawtodtt, as well as chaotic and Technology, New Delhi, India under Grant No.
solutions as reported if3]. The high magnitude of the SP/S2K-26/98.
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